-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathSnake and ladder.cpp
102 lines (89 loc) · 2.45 KB
/
Snake and ladder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
// C++ program to find minimum number of dice throws
// required to reach last cell from first cell of a given
// snake and ladder board
#include <iostream>
#include <queue>
using namespace std;
// An entry in queue used in BFS
struct queueEntry {
int v; // Vertex number
int dist; // Distance of this vertex from source
};
// This function returns minimum number of dice throws
// required to Reach last cell from 0'th cell in a snake and
// ladder game. move[] is an array of size N where N is no.
// of cells on board If there is no snake or ladder from
// cell i, then move[i] is -1 Otherwise move[i] contains
// cell to which snake or ladder at i takes to.
int getMinDiceThrows(int move[], int N)
{
// The graph has N vertices. Mark all the vertices as
// not visited
bool* visited = new bool[N];
for (int i = 0; i < N; i++)
visited[i] = false;
// Create a queue for BFS
queue<queueEntry> q;
// Mark the node 0 as visited and enqueue it.
visited[0] = true;
queueEntry s
= { 0, 0 }; // distance of 0't vertex is also 0
q.push(s); // Enqueue 0'th vertex
// Do a BFS starting from vertex at index 0
queueEntry qe; // A queue entry (qe)
while (!q.empty()) {
qe = q.front();
int v = qe.v; // vertex no. of queue entry
// If front vertex is the destination vertex,
// we are done
if (v == N - 1)
break;
// Otherwise dequeue the front vertex and enqueue
// its adjacent vertices (or cell numbers reachable
// through a dice throw)
q.pop();
for (int j = v + 1; j <= (v + 6) && j < N; ++j) {
// If this cell is already visited, then ignore
if (!visited[j]) {
// Otherwise calculate its distance and mark
// it as visited
queueEntry a;
a.dist = (qe.dist + 1);
visited[j] = true;
// Check if there a snake or ladder at 'j'
// then tail of snake or top of ladder
// become the adjacent of 'i'
if (move[j] != -1)
a.v = move[j];
else
a.v = j;
q.push(a);
}
}
}
// We reach here when 'qe' has last vertex
// return the distance of vertex in 'qe'
return qe.dist;
}
// Driver program to test methods of graph class
int main()
{
// Let us construct the board given in above diagram
int N = 30;
int moves[N];
for (int i = 0; i < N; i++)
moves[i] = -1;
// Ladders
moves[2] = 21;
moves[4] = 7;
moves[10] = 25;
moves[19] = 28;
// Snakes
moves[26] = 0;
moves[20] = 8;
moves[16] = 3;
moves[18] = 6;
cout << "Min Dice throws required is "
<< getMinDiceThrows(moves, N);
return 0;
}