diff --git a/README.md b/README.md index 453ada353..97fc0f79f 100644 --- a/README.md +++ b/README.md @@ -1,17 +1,15 @@ ---- -output: - html_document: default - pdf_document: default ---- - + + -[![packageversion](https://img.shields.io/badge/NNS%20version-10.9.3-blue.svg?style=flat-square)](https://github.com/OVVO-Financial/NNS/commits/NNS-Beta-Version) [![Licence](https://img.shields.io/badge/licence-GPL--3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0.en.html) +[![packageversion](https://img.shields.io/badge/NNS%20version-10.9.3-blue.svg?style=flat-square)](https://github.com/OVVO-Financial/NNS/commits/NNS-Beta-Version) [![Licence](https://img.shields.io/badge/licence-GPL--3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0.en.html) +

# NNS -Nonlinear nonparametric statistics using partial moments. Partial moments are the [elements of variance](https://www.linkedin.com/pulse/elements-variance-fred-viole) and [asymptotically approximate the area of f(x)](https://doi.org/10.2139/ssrn.2186471). These robust statistics provide the basis for nonlinear analysis while retaining linear equivalences. +Nonlinear nonparametric statistics using partial moments. Partial moments are the [elements of variance](https://www.linkedin.com/pulse/elements-variance-fred-viole) and [asymptotically approximate the area of f(x)](https://doi.org/10.2139/ssrn.2186471). These robust statistics provide the basis for nonlinear analysis while retaining linear equivalences. + NNS offers: - Numerical Integration & Numerical Differentiation