-
Notifications
You must be signed in to change notification settings - Fork 17
/
LTspice2Matlab.m
832 lines (744 loc) · 45.2 KB
/
LTspice2Matlab.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
function raw_data = LTspice2Matlab( filename, varargin )
%
%
% LTspice2Matlab -- Reads an LTspice IV or LTspice XVII .raw waveform file containing data from a Transient
% Analysis (.tran), AC Analysis (.ac), DC Sweep (.dc), Operating Point (.op), Transfer Function
% (.tf), FFT (.four), or Noise (.noise) simulation, and converts voltages and currents vs. time
% (or frequency) into MATLAB variables. It also supports import of stepped simulations.
% This function can read compressed binary, uncompressed binary, and ASCII file formats. It does
% not currently support files saved in the Fast Access Format. In the case of compressed binary,
% the data is automatically uncompressed using fast quadratic point insertion. Note that LTspice
% uses a lossy compression format (enabled by default) with user adjustable error bounds.
%
% Use LTspice2Matlab to import LTspice waveforms into MATLAB for additional analysis or to
% compare with measured data.
%
% This function has been tested with LTspice IV version 4.01p, and MATLAB versions 6.1 and 7.5.
% Regression testing has been used to expose the function to a wide range of LTspice settings.
% Author: Paul Wagner 2009-04-25
%
% Not so much testing has been done for the added features (steps, .op, .dc, .tf, and .noise
% simulations, FFT calculations), but they should work well at least with uncompressed files and
% without downsampling.
% Modified: Peter Feichtinger 2015-04
%
% Support for reading files written by LTspice XVII (which encodes text in UTF-16) added.
% Modified: Peter Feichtinger 2019-02
%
%
% Calling Convention:
% RAW_DATA = LTspice2Matlab( FILENAME ); % Returns all variables found in FILENAME
% (or)
% RAW_DATA = LTspice2Matlab( FILENAME, SELECTED_VARS ); % Returns only selected variables
% Set SELECTED_VARS to [] to quickly determine the number and names of variables present in
% FILENAME without actually loading the variables.
% (or)
% RAW_DATA = LTspice2Matlab( FILENAME, SELECTED_VARS, N );
% Returns variables listed in SELECTED_VARS, with all waveforms downsampled by N. Set N > 1 to
% load very large data files using less memory, at the price of degraded waveform accuracy and
% possible aliasing.
%
% Inputs: FILENAME is a string containing the name and path of the LTspice .raw file to be converted.
%
% SELECTED_VARS (optional) is a vector of indexes indicating which variables to extract from the
% .raw file. For example, if a .raw file has 14 variables and SELECTED_VARS is [1 8 9], then
% the output RAW_DATA.variable_mat will be a 3 x num_data_pnts matrix containing waveforms
% for variables 1, 8, and 9 only. Note that SELECTED_VARS does not cover the time (or
% frequency) variable (index 0), which is returned separately in RAW_DATA.time_vect (or
% RAW_DATA.freq_vect). Extracting only a subset of variables is a way to use less memory
% when loading very large simulation files.
%
% If this parameter is not specified, then all variables are returned by default. Setting
% SELECTED_VARS to 'all' will also cause all variables to be returned.
%
% To quickly determine the number and names of variables present in a .raw file, call
% LTspice2Matlab with SELECTED_VARS set to []. In this case, all fields in RAW_DATA will be
% populated, except .time_vect (or .freq_vect) and .variable_mat, which will both be empty.
% Since only the header is read, the function call should execute very quickly, even for
% large files.
%
% N (optional) must be a positive integer >= 1. If N is specified, then SELECTED_VARS must also
% be specified. If N is unspecified, it defaults to 1, which does not change the sampling
% rate. If this value is 2 or larger, the returned voltage, current, and time data will be
% downsampled by keeping every N-th sample in the original data, starting with the first.
% Caution: No lowpass filtering is applied prior to downsampling, so aliasing may occur.
% Also, in many cases LTspice saves data with a non-constant sampling rate, in which case
% downsampling can result in substantial waveform distortion. This option should only be
% used if the waveform of interest is initially oversampled.
%
% Outputs: RAW_DATA is a Matlab structure containing the following fields:
% title: String containing the title appearing in the .raw file header.
% date: String containing the date appearing in the .raw file header.
% plotname: String indicating simulation type (e.g. 'Transient Analysis')
% conversion_notes: Description of modifications (if any) done to the data during
% conversion.
% num_variables: Number of variables (does not include the time/frequency variable).
% variable_type_list: A cell of strings indicating the variable type (e.g. 'voltage').
% variable_name_list: A cell of strings indicating the name of each variable.
% selected_vars: A vector of indicies referencing variable_type_list cells,
% corresponding to each row in variable_mat.
% num_data_pnts: Number of data points for each variable.
% num_steps: The number of steps for stepped simulations.
% variable_mat: Double precision matrix with num_variables rows and num_data_pnts
% columns. This matrix contains node voltages (in Volts) and device
% currents (in Amps) for each variable and each time point listed in
% time_vect (or freq_vect).
% For AC Analysis simulations, variable_mat will have complex values
% showing the real and imaginary components of the voltage or current
% at the corresponding frequency. To convert this to log magnitude and
% normalized phase representation used in LTspice plots, use the
% following formulas:
% Log_Magnitude_dB = 20*log10(abs(variable_mat))
% Norm_Phase_degrees = angle(variable_mat) * 180/pi
% time_vect: [Field returned for Transient Analysis only] Double precision row
% vector of time values (in seconds) at each simulation point.
% (or)
% freq_vect: [Field returned for AC Analysis only] Double precision row vector of
% frequency values (in Hz) at each simulation point.
% (or)
% source_vect: [Field returned for DC Sweeps only] Double precision row vector of
% source values (in Amperes or Volts) at each simulation point.
% (or)
% param_vect: [Field returned for stepped DC Operating Point or Transfer Function
% Analysis only] Double precision row vector of values for the stepped
% parameter.
% source_name: [Field returned for DC Sweeps only] The name of the source that is
% swept.
% (or)
% param_name: [Field returned for stepped DC Operating Point or Transfer Function
% Analysis only] The name of the stepped parameter.
%
% ** For stepped simulations that have been properly recognized as such, an additional
% dimension is added to variable_mat and the time, frequency, source or param vector,
% respectively.
%
% ** Currently this function is able to import results from Transient Analysis (.tran), AC Analysis (.ac),
% DC Sweeps (.dc), Operating Point Analysis (.op), Transfer Function (.tf) and Noise (.noise)
% simulations, and FFT calculations (.four).
%
%
% Examples
% --------
% These examples assume you've run a .tran simulation in LTspice for a hypothetical file called
% BASIC_CIRCUIT.ASC, and that an output file called BASIC_CIRCUIT.RAW has been created. It also
% assumes your current MATLAB directory is pointing to the directory where the .raw file is
% located (or that you prepended the full path to the input parameter FILENAME).
%
% To import BASIC_CIRCUIT.RAW into MATLAB and create a labeled plot of a single variable vs. time:
%
% raw_data = LTspice2Matlab('BASIC_CIRCUIT.RAW');
% variable_to_plot = 1; % This example plots the first variable in the data structure.
% plot( raw_data.time_vect, raw_data.variable_mat(variable_to_plot,:), 'k' );
% title( sprintf('Waveform %s', raw_data.variable_name_list{variable_to_plot}) );
% ylabel( raw_data.variable_type_list{variable_to_plot} );
% xlabel( 'Time (sec)' );
%
% To superimpose all variables in BASIC_CIRCUIT.RAW on a single graph with a legend:
%
% raw_data = LTspice2Matlab('BASIC_CIRCUIT.RAW');
% plot( raw_data.time_vect, raw_data.variable_mat );
% title( sprintf( 'File: %s', raw_data.title) );
% legend( raw_data.variable_name_list );
% ylabel( 'Voltage (V) or Current (A)' );
% xlabel( 'Time (sec)' );
%
% To quickly determine the number and names of variables in BASIC_CIRCUIT.RAW without loading the entire
% file:
%
% raw_data = LTspice2Matlab('BASIC_CIRCUIT.RAW', []);
% disp( sprintf('\n\nThis file contains %.0f variables:\n', raw_data.num_variables) );
% disp( sprintf('NAME TYPE\n-------------------------') );
% disp( [char(raw_data.variable_name_list), char(zeros(raw_data.num_variables,5)), ...
% char(raw_data.variable_type_list)] );
%
% Initialize the output structure.
raw_data = [];
% Process function arguments
if nargin == 1
selected_vars = 'all';
downsamp_N = 1;
elseif nargin == 2
selected_vars = varargin{1};
if ischar(selected_vars), selected_vars = lower(selected_vars); end
downsamp_N = 1;
elseif nargin == 3
selected_vars = varargin{1};
if ischar(selected_vars), selected_vars = lower(selected_vars); end
downsamp_N = varargin{2};
else
error( 'LTspice2Matlab takes only 1, 2, or 3 input parameters. Type "help LTspice2Matlab" for details' );
end
if length(downsamp_N) ~= 1 || ~isnumeric(downsamp_N) || isnan(downsamp_N) || mod(downsamp_N,1) ~= 0.0 || downsamp_N <= 0
error( 'Optional parameter DOWNSAMP_N must be a positive integer >= 1' );
end
% Try to open file
filename = strtrim(filename); % Remove leading and trailing spaces from filename.
fid = fopen(filename, 'rb');
if length(fid) == 1 && isnumeric(fid) && fid == -1
% try to append ".raw" to the file name ...
fid = fopen(sprintf( '%s.raw', filename ), 'rb');
if length(fid) == 1 && isnumeric(fid) && fid == -1
error( 'Could not open file "%s"', filename );
end
end
[filename, ~, machineformat] = fopen(fid);
% Detect text encoding: LTspice IV uses ASCII, LTspice XVII uses UTF-16
utf16 = false;
[buf, count] = fread(fid, 2, '*uint8');
if count == 2 && any(buf == 0)
utf16 = true;
end
clear buf count;
frewind(fid);
% Load header tags & information
% Variables include voltages and currents only. Does not include the time vector.
variable_name_list = {};
variable_type_list = {};
variable_flag = 0;
file_format = '';
while 1
if ~utf16
the_line = fgetl(fid);
else
% fopen doesn't know UTF-16, read manually using fread instead.
the_line = [];
while ~feof(fid)
[buf, count] = fread(fid, 100, 'uint16=>char', 0, 'ieee-le');
nl = find(buf == newline, 1);
if isempty(nl)
the_line = [the_line buf']; %#ok<AGROW>
continue;
end
the_line = [the_line buf(1:nl(1)-1)']; %#ok<AGROW>
fseek(fid, (-count + nl(1)) * 2, 0);
break;
end
if isempty(the_line) && feof(fid)
% Do as fgetl does
the_line = -1;
end
end
if ~ischar(the_line)
try fclose( fid ); catch, end
error( 'Format error in LTspice file "%s" ... Unexpected end of file', filename );
end
if contains(the_line, 'Binary:')
file_format = 'binary';
break;
elseif contains(the_line, 'Values:')
file_format = 'ascii';
break;
end
if variable_flag == 0 % Non-variable header section
if isempty(the_line)
colon_index = [];
else
colon_index = find( the_line == ':' );
end
if isempty(colon_index)
try fclose( fid ); catch, end
error( 'Format error in LTspice file "%s"', filename );
end
var_name = the_line(1:(colon_index(1)-1));
var_value = strtrim(the_line((colon_index(1)+1):end));
vn_keep = var_name( var_name ~= ' ' & var_name ~= '.' & var_name ~= char(9) & var_name ~= newline & var_name ~= char(13) );
var_name = lower(vn_keep);
if isempty(var_name) || (var_name(1)>='0' && var_name(1)<='9')
try fclose( fid ); catch, end
error( 'Format error in LTspice file "%s" ... Bad tag name found', filename );
end
if strcmpi( var_name, 'variables' ) || strcmpi( var_name, 'variable' )
variable_flag = 1;
continue;
end
value_try = str2double(var_value);
try
if isnan(value_try)
raw_data.(var_name) = var_value;
else
raw_data.(var_name) = value_try;
end
catch
try fclose( fid ); catch, end
error( 'Format error in LTspice file "%s" ... Bad tag name found', filename );
end
else % Variable header section
leading_ch_index = find( (the_line(1:end-1) == ' ' | the_line(1:end-1) == char(9)) & (the_line(2:end) ~= ' ' & the_line(2:end) ~= char(9)) );
if length(leading_ch_index) ~= 3
try fclose( fid ); catch, end
error( 'Format error in LTspice file "%s" ... Wrong number of columns in the variable define section', filename );
end
part1 = strtrim(the_line( (leading_ch_index(1)+1) : leading_ch_index(2) ));
part2 = strtrim(the_line( (leading_ch_index(2)+1) : leading_ch_index(3) ));
part3 = strtrim(the_line( (leading_ch_index(3)+1) : end ));
if str2double(part1) ~= length(variable_name_list)
try fclose( fid ); catch, end
error( 'Format error in LTspice file "%s" ... Inconsistency found in the variable define section', filename );
end
variable_name_list{end+1} = part2; %#ok<AGROW>
variable_type_list{end+1} = part3; %#ok<AGROW>
end
end
% Check raw_data structure for required fields
expected_tags = {'title', 'date', 'plotname', 'flags', 'novariables', 'nopoints' };
expected_tags_full = {'Title', 'Date', 'Plotname', 'Flags', 'No. Variables', 'No. Points' };
for q=1:length(expected_tags)
if ~isfield( raw_data, lower(expected_tags{q}) )
try fclose( fid ); catch, end
error( 'Format error in LTspice file "%s" ... tag "%s" not found', filename, expected_tags_full{q} );
end
end
% Rename number fields
raw_data.conversion_notes = '';
raw_data.num_data_pnts = raw_data.nopoints; raw_data = rmfield( raw_data, 'nopoints' );
raw_data.num_variables = raw_data.novariables - 1; raw_data = rmfield( raw_data, 'novariables' );
% "raw_data.num_variables" does not include the time vector (index 0 in the .raw file)
% Check for stepped simulation
if contains(raw_data.flags, 'stepped', 'IgnoreCase',true)
step_flag = true;
else
step_flag = false;
end
raw_data.num_steps = 1;
% Remove unneeded fields and store offset
if isfield( raw_data, 'command' ), raw_data = rmfield( raw_data, 'command' ); end
if isfield( raw_data, 'backannotation' ), raw_data = rmfield( raw_data, 'backannotation' ); end
if isfield( raw_data, 'offset' )
general_offset = raw_data.offset; %(sec)
raw_data = rmfield( raw_data, 'offset' );
else
general_offset = 0.0;
end
% cut off the time variable.
raw_data.variable_name_list = variable_name_list(2:end);
raw_data.variable_type_list = variable_type_list(2:end);
% determine simulation type
if contains(raw_data.plotname, 'transient analysis', 'IgnoreCase',true), simulation_type = '.tran';
elseif contains(raw_data.plotname, 'ac analysis', 'IgnoreCase',true), simulation_type = '.ac';
elseif contains(raw_data.plotname, 'dc transfer characteristic', 'IgnoreCase',true), simulation_type = '.dc';
elseif contains(raw_data.plotname, 'operating point', 'IgnoreCase',true), simulation_type = '.op';
elseif contains(raw_data.plotname, 'transfer function', 'IgnoreCase',true), simulation_type = '.tf';
elseif contains(raw_data.plotname, 'fft of time domain data', 'IgnoreCase',true), simulation_type = '.four';
elseif contains(raw_data.plotname, 'noise spectral density', 'IgnoreCase',true), simulation_type = '.noise';
else
try fclose( fid ); catch, end
error( 'Currently LTspice2Matlab is only able to import results from Transient Analysis (.tran), AC Analysis (.ac), Operating Point (.op), Transfer Function (.tf), DC Sweep (.dc), Noise (.noise) simulations and FFT (.four) calculations.' );
end
% Check for the expected formats for every simulation type
if contains(raw_data.flags, 'fastaccess', 'IgnoreCase',true)
try fclose( fid ); catch, end
error( 'LTspice2Matlab cannot convert files saved in the "Fast Access" format.' );
end
switch simulation_type
case '.tran'
if ~contains(raw_data.flags, 'real', 'IgnoreCase',true)
try fclose( fid ); catch, end
error( 'Expected to find "real" flag for a Transient Analysis (.tran) simulation. Unsure how to convert the data' );
end
if ~contains(raw_data.flags, 'forward', 'IgnoreCase',true)
try fclose( fid ); catch, end
error( 'Expected to find "forward" flag for a Transient Analysis (.tran) simulation. Unsure how to convert the data' );
end
case '.ac'
if ~contains(raw_data.flags, 'complex', 'IgnoreCase',true)
try fclose( fid ); catch, end
error( 'Expected to find "complex" flag for an AC Analysis (.ac) simulation. Unsure how to convert the data' );
end
if ~contains(raw_data.flags, 'forward', 'IgnoreCase',true)
try fclose( fid ); catch, end
error( 'Expected to find "forward" flag for an AC Analysis (.ac) simulation. Unsure how to convert the data' );
end
case '.dc'
if ~contains(raw_data.flags, 'real', 'IgnoreCase',true)
try fclose( fid ); catch, end
error( 'Expected to find "real" flag for a DC Sweep (.dc) simulation. Unsure how to convert the data' );
end
if ~contains(raw_data.flags, 'forward', 'IgnoreCase',true)
try fclose( fid ); catch, end
error( 'Expected to find "forward" flag for a DC Sweep (.dc) simulation. Unsure how to convert the data' );
end
case '.op'
if ~contains(raw_data.flags, 'real', 'IgnoreCase',true)
try fclose( fid ); catch, end
error( 'Expected to find "real" flag for an Operating Point (.op) simulation. Unsure how to convert the data' );
end
case '.tf'
if ~contains(raw_data.flags, 'real', 'IgnoreCase',true)
try fclose( fid ); catch, end
error( 'Expected to find "real" flag for a Transfer function (.tf) simulation. Unsure how to convert the data' );
end
case '.four'
if ~contains(raw_data.flags, 'complex', 'IgnoreCase',true)
try fclose( fid ); catch, end
error( 'Expected to find "complex" flag for an FFT calculation. Unsure how to convert the data' );
end
if ~contains(raw_data.flags, 'forward', 'IgnoreCase',true)
try fclose( fid ); catch, end
error( 'Expected to find "forward" flag for an FFT calculation. Unsure how to convert the data' );
end
case '.noise'
if ~contains(raw_data.flags, 'real', 'IgnoreCase',true)
try fclose( fid ); catch, end
error( 'Expected to find "real" flag for a Noise simulation. Unsure how to convert the data' );
end
if ~contains(raw_data.flags, 'forward', 'IgnoreCase',true)
try fclose( fid ); catch, end
error( 'Expected to find "forward" flag for a Noise simulation. Unsure how to convert the data' );
end
end
% Remove flags field
%if isfield( raw_data, 'flags' ), raw_data = rmfield( raw_data, 'flags' ); end
% Look if selected_vars is a string that says 'all' or similar
if ischar(selected_vars)
if strcmpi(selected_vars, 'all') || strcmpi(selected_vars, 'everything') || strcmpi(selected_vars, 'complete') || ...
strcmpi(selected_vars, 'all variables') || strcmpi(selected_vars, 'all vars') || ...
strcmpi(selected_vars, 'every thing') || strcmpi(selected_vars, 'every')
selected_vars = 1:raw_data.num_variables; %Return all variables
else
try fclose( fid ); catch, end
error( 'Bad value for optional input parameter SELECTED_VARS' );
end
end
% selected_vars is empty, only return structure without data
if size(selected_vars,1) == 0 || size(selected_vars,2) == 0
raw_data.selected_vars = [];
raw_data.variable_mat = [];
raw_data.time_vect = [];
try fclose( fid ); catch, end
return;
end
% Sanity check selected_vars
if size(selected_vars,1) > 1 && size(selected_vars,2) > 1
try fclose( fid ); catch, end
error( 'SELECTED_VARS must be a row or column vector, not a matrix' );
end
if ~isempty(find(selected_vars == 0, 1))
try fclose( fid ); catch, end
error( 'The time vector (index 0) is returned separately.\n Values in input parameter SELECTED_VARS must be positive integers >= 1 and <= NUM_VARIABLES' );
end
non_integer_index = find(isnan(selected_vars) | ~isnumeric(selected_vars) | mod( selected_vars, 1 ) ~= 0.0, 1);
if ~isempty(non_integer_index)
try fclose( fid ); catch, end
error( 'Values in input parameter SELECTED_VARS must be positive integers >= 1 and <= NUM_VARIABLES' );
end
missing_index = find( ~ismember( selected_vars, 1:raw_data.num_variables ), 1 );
if ~isempty(missing_index)
try fclose( fid ); catch, end
error( 'Error in input parameter SELECTED_VARS ... Out of range value(s) found' );
end
selected_vars = unique(selected_vars); % remove duplicates and sort in ascending order.
raw_data.selected_vars = selected_vars;
% Apply donwsampling
NumPnts = raw_data.num_data_pnts;
NumPnts_DS = floor(NumPnts / downsamp_N);
raw_data.num_data_pnts = NumPnts_DS; % Updated # of points
NumVars = raw_data.num_variables + 1;
% READ IN THE ACTUAL WAVEFORM DATA
if strcmpi(file_format, 'binary')
binary_start = ftell(fid); % start of binary data section.
if strcmpi( simulation_type, '.tran' ) || strcmpi( simulation_type, '.dc' ) || strcmpi( simulation_type, '.noise' )
% For Transient Analysis simulations, the time data is stored in double precision floating point binary format,
% and everything else is stored in single precision format. For stepped simulations, a new step is intoduced
% by a duplicate start entry.
% For DC Sweep simulations, the source value is stored in double precision format (8 bytes) and the
% operating point values in real format. A new step is introduced by a duplicate start entry.
% For Noise simulations, the frequency data is stored in double precision floating point binary format,
% and gain, output noise and input referred noise are stored in single precision format. It is unknown,
% how new steps are introduced.
% Extract the binary data in the fewest possible number of contiguous blocks
if length(selected_vars) > 1
g_border = find( [2, diff(selected_vars), 2] ~= 1 );
block_list = cell(1, length(g_border) - 1);
for k=1:length(g_border)-1, block_list{k} = g_border(k):(g_border(k+1)-1); end
else
block_list = {1:length(selected_vars)};
end
raw_data.variable_mat = zeros(length(selected_vars), NumPnts_DS); % Initialize.
for k=1:length(block_list)
target_var_index = selected_vars(block_list{k});
fseek(fid, binary_start + (target_var_index(1)+1)*4, 'bof');
TVIL = length(target_var_index);
bytes_skip = (NumVars+1-TVIL)*4 + (downsamp_N-1)*(NumVars+1)*4;
precision_str = sprintf('%.0f*float',TVIL);
raw_data.variable_mat(block_list{k},:) = reshape( fread(fid, NumPnts_DS*TVIL, precision_str, bytes_skip, machineformat), TVIL, NumPnts_DS );
end
fseek(fid, binary_start, 'bof'); % rewind to start, then extract the time/source vector.
raw_data.time_vect = fread( fid, NumPnts_DS, 'double', (NumVars-1)*4 + (downsamp_N-1)*(NumVars+1)*4, machineformat ).';
% Process stepped data
if step_flag
if downsamp_N > 1
warning( 'LTspice2Matlab:downsampleSteps', ...
'Stepped data found and downsampling enabled. Steps may not be recognized properly.' );
end
% Stepped data starts on a duplicate entry in LTspice IV
steps = find( diff(raw_data.time_vect) == 0.0 );
if numel(steps) > 0
% Remove duplicate entries
raw_data.variable_mat(:,steps) = [];
raw_data.time_vect(steps) = [];
num_steps = numel(steps) + 1;
else
% Stepped data starts with the same time/source value in LTspice XVII
num_steps = numel(find( raw_data.time_vect == raw_data.time_vect(1) ));
end
raw_data.num_steps = num_steps;
% Reshape value matrix and time/source vector
mat_size = size(raw_data.variable_mat);
raw_data.variable_mat = reshape(raw_data.variable_mat, mat_size(1), mat_size(2) / num_steps, num_steps);
raw_data.time_vect = reshape(raw_data.time_vect, mat_size(2) / num_steps, num_steps).';
% Update num_data_pnts
raw_data.num_data_pnts = mat_size(2) / num_steps;
end
% Rename time_vect and add source name for .dc simulations
if strcmpi( simulation_type, '.dc' )
raw_data.source_vect = raw_data.time_vect;
raw_data = rmfield( raw_data, 'time_vect' );
% Rename time_vect for .noise simulations
elseif strcmpi( simulation_type, '.noise' )
raw_data.freq_vect = raw_data.time_vect;
raw_data = rmfield( raw_data, 'time_vect' );
end
elseif strcmpi( simulation_type, '.ac' ) || strcmpi( simulation_type, '.four' )
% For AC Analysis simulations, the frequency data is stored in double precision format (8 + 8 unused bytes),
% and the variables are stored as complex double precision arrays (8 bytes real followed by 8 bytes imag).
% For stepped simulations, every step is simply appended.
% The same goes for FFT calculations.
% Extract the binary data in the fewest possible number of contiguous blocks
if length(selected_vars) > 1
g_border = find( [2, diff(selected_vars), 2] ~= 1 );
block_list = cell(1, length(g_border) - 1);
for k=1:length(g_border)-1, block_list{k} = g_border(k):(g_border(k+1)-1); end
else
block_list = {1:length(selected_vars)};
end
raw_data.variable_mat = zeros(length(selected_vars), NumPnts_DS); % Initialize.
if numel(raw_data.variable_mat) ~= 0, raw_data.variable_mat(1,1) = 0.0 + 1i*0.0; end % Allocate memory for complex double.
for k=1:length(block_list)
target_var_index = selected_vars(block_list{k});
fseek(fid, binary_start + target_var_index(1)*16, 'bof');
TVIL = length(target_var_index);
bytes_skip = (NumVars-TVIL)*16 + (downsamp_N-1)*NumVars*16;
precision_str = sprintf('%.0f*double',TVIL*2);
temp_buff = reshape(fread(fid, NumPnts_DS*TVIL*2, precision_str, bytes_skip, machineformat), TVIL*2, NumPnts_DS );
raw_data.variable_mat(block_list{k},:) = temp_buff(1:2:end-1,:) + 1i*temp_buff(2:2:end,:);
clear temp_buff;
end
fseek(fid, binary_start, 'bof'); % rewind to start, then extract the time vector.
raw_data.freq_vect = fread( fid, NumPnts_DS, 'double', (NumVars-1)*16 + 8 + (downsamp_N-1)*NumVars*16, machineformat ).';
% Process stepped data
if step_flag
% Stepped data starts with low frequency again, should work with downsampled data
steps = find( diff(raw_data.freq_vect) < 0.0 ) + 1;
num_steps = numel(steps) + 1;
raw_data.num_steps = num_steps;
% Reshape value matrix and time/source vector
mat_size = size(raw_data.variable_mat);
raw_data.variable_mat = reshape(raw_data.variable_mat, mat_size(1), mat_size(2) / num_steps, num_steps);
raw_data.freq_vect = reshape(raw_data.freq_vect, mat_size(2) / num_steps, num_steps).';
% Update num_data_pnts
raw_data.num_data_pnts = mat_size(2) / num_steps;
end
elseif strcmpi( simulation_type, '.op' ) || strcmpi( simulation_type, '.tf' )
% For simple Operating Point and Transfer Function simulations, the first variable is stored in double
% precision format (8 bytes), the remaining variables are stored in single precision format.
% For stepped Operating point and Transfer Function simulations, the stepping parameter is stored in double
% precision format (8 bytes) and the variables are stored in single precision format.
if step_flag
% Extract the binary data in the fewest possible number of contiguous blocks
if length(selected_vars) > 1
g_border = find( [2, diff(selected_vars), 2] ~= 1 );
block_list = cell(1, length(g_border) - 1);
for k=1:length(g_border)-1, block_list{k} = g_border(k):(g_border(k+1)-1); end
else
block_list = {1:length(selected_vars)};
end
raw_data.variable_mat = zeros(length(selected_vars), NumPnts_DS); % Initialize.
for k=1:length(block_list)
target_var_index = selected_vars(block_list{k});
fseek(fid, binary_start + (target_var_index(1)+1)*4, 'bof');
TVIL = length(target_var_index);
bytes_skip = (NumVars+1-TVIL)*4 + (downsamp_N-1)*(NumVars+1)*4;
precision_str = sprintf('%.0f*float',TVIL);
raw_data.variable_mat(block_list{k},:) = reshape( fread(fid, NumPnts_DS*TVIL, precision_str, bytes_skip, machineformat), TVIL, NumPnts_DS );
end
fseek(fid, binary_start, 'bof'); % rewind to start, then extract the step parameter vector.
raw_data.param_vect = fread( fid, NumPnts_DS, 'double', (NumVars-1)*4 + (downsamp_N-1)*(NumVars+1)*4, machineformat ).';
raw_data.param_name = variable_name_list{1};
raw_data.num_steps = raw_data.num_data_pnts;
raw_data.num_data_pnts = 1;
else
% Ignore selected_vars and read everything, since we have only one set of variables
raw_data.variable_mat = zeros(1, NumVars);
fseek(fid, binary_start, 'bof');
raw_data.variable_mat(1) = fread(fid, 1, 'double', 0, machineformat);
raw_data.variable_mat(2:end) = fread(fid, NumVars - 1, sprintf('%.0f*float', NumVars - 1), 0, machineformat);
% First variable is normal variable, not time or step parameter
raw_data.selected_vars = 0:(NumVars - 1);
raw_data.variable_name_list = variable_name_list;
raw_data.variable_type_list = variable_type_list;
raw_data.num_variables = NumVars;
end
else
try fclose( fid ); catch, end
error( 'Simulation type (%s) not currently supported', simulation_type );
end
if downsamp_N == 1
raw_data.conversion_notes = 'Converted from Binary format';
else
raw_data.conversion_notes = sprintf( 'Converted from Binary format. Downsampled from %.0f to %.0f points', NumPnts, NumPnts_DS );
end
elseif strcmpi(file_format, 'ascii' )
if strcmpi( simulation_type, '.tran' ) || strcmpi( simulation_type, '.dc')
% Format: point number, time value, var1, var2 ... varN
raw_data.variable_mat = fscanf( fid, '%g', [raw_data.num_variables+2, raw_data.num_data_pnts] ); %matrix is filled in column order.
if (size(raw_data.variable_mat,1) ~= raw_data.num_variables+2) || (size(raw_data.variable_mat,2) ~= raw_data.num_data_pnts)
error( 'Format error in ASCII Transient Analysis or DC Sweep LTspice file "%s" ... Incorrect number of data values read', filename );
end
raw_data.time_vect = raw_data.variable_mat(2,1:downsamp_N:end);
raw_data.variable_mat = raw_data.variable_mat(2+selected_vars,1:downsamp_N:end);
% Process stepped data
if step_flag
if downsamp_N > 1
warning( 'LTspice2Matlab:downsampleSteps', 'Stepped data found and downsampling enabled. Steps may not be recognized properly.' );
end
% Stepped data starts with same start time/source value
num_steps = numel(find( raw_data.time_vect == raw_data.time_vect(1) ));
raw_data.num_steps = num_steps;
% Reshape value matrix and time/source vector
mat_size = size(raw_data.variable_mat);
raw_data.variable_mat = reshape(raw_data.variable_mat, mat_size(1), mat_size(2) / num_steps, num_steps);
raw_data.time_vect = reshape(raw_data.time_vect, mat_size(2) / num_steps, num_steps).';
% Update num_data_pnts
raw_data.num_data_pnts = mat_size(2) / num_steps;
end
% Rename time_vect and add source name for .dc simulations
if strcmpi( simulation_type, '.dc' )
raw_data.source_vect = raw_data.time_vect;
raw_data = rmfield( raw_data, 'time_vect' );
raw_data.source_name = variable_name_list{1};
end
elseif strcmpi( simulation_type, '.ac' ) || strcmpi( simulation_type, '.four' )
% Format: point number, freq value, 0, var1 real, var1 imag, var2 real, var2 imag ... varN real, varN imag
all_data = fread( fid, inf, 'uchar' );
all_data( all_data == ',' ) = sprintf( '\t' ); %Replace commas with tab characters
raw_data.variable_mat = sscanf( char(all_data), '%g', [3+2*raw_data.num_variables, raw_data.num_data_pnts] );
clear all_data;
% raw_data.variable_mat = fscanf( fid, '%g', [3+2*raw_data.num_variables, raw_data.num_data_pnts] ); %matrix is filled in column order.
if (size(raw_data.variable_mat,1) ~= (3+2*raw_data.num_variables)) || (size(raw_data.variable_mat,2) ~= raw_data.num_data_pnts)
error( 'Format error in ASCII AC Analysis LTspice file "%s" ... Incorrect number of data values read', filename );
end
raw_data.freq_vect = raw_data.variable_mat(2,1:downsamp_N:end);
raw_data.variable_mat = raw_data.variable_mat(3+selected_vars*2-1,1:downsamp_N:end) + 1i*raw_data.variable_mat(3+selected_vars*2,1:downsamp_N:end);
% Process stepped data
if step_flag
% Stepped data starts with low frequency again, should work with downsampled data
steps = find( diff(raw_data.freq_vect) < 0.0 ) + 1;
num_steps = numel(steps) + 1;
raw_data.num_steps = num_steps;
% Reshape value matrix and time/source vector
mat_size = size(raw_data.variable_mat);
raw_data.variable_mat = reshape(raw_data.variable_mat, mat_size(1), mat_size(2) / num_steps, num_steps);
raw_data.freq_vect = reshape(raw_data.freq_vect, mat_size(2) / num_steps, num_steps).';
% Update num_data_pnts
raw_data.num_data_pnts = mat_size(2) / num_steps;
end
elseif strcmpi( simulation_type, '.op' ) || strcmpi( simulation_type, '.tf' )
% Format: point number, first value, var2, var3 ... varN
% Format stepped: point number, step parameter, var1, var2 ... varN
if step_flag
raw_data.variable_mat = fscanf( fid, '%g', [raw_data.num_variables+2, raw_data.num_data_pnts] ); %matrix is filled in column order.
if (size(raw_data.variable_mat,1) ~= raw_data.num_variables+2) || (size(raw_data.variable_mat,2) ~= raw_data.num_data_pnts)
error( 'Format error in ASCII Operating Point or Transfer Function LTspice file "%s" ... Incorrect number of data values read', filename );
end
raw_data.param_vect = raw_data.variable_mat(2,1:downsamp_N:end);
raw_data.variable_mat = raw_data.variable_mat(2+selected_vars,1:downsamp_N:end);
raw_data.param_name = variable_name_list{1};
raw_data.num_steps = raw_data.num_data_pnts;
raw_data.num_data_pnts = 1;
else
raw_data.variable_mat = fscanf( fid, '%g', [raw_data.num_variables+2, raw_data.num_data_pnts] ); %matrix is filled in column order.
if (size(raw_data.variable_mat,1) ~= raw_data.num_variables+2) || (size(raw_data.variable_mat,2) ~= raw_data.num_data_pnts)
error( 'Format error in ASCII Operating Point or Transfer Function LTspice file "%s" ... Incorrect number of data values read', filename );
end
raw_data.variable_mat = raw_data.variable_mat(2:end,1:downsamp_N:end).';
% First variable is normal variable, not time or step parameter
raw_data.selected_vars = 0:(NumVars - 1);
raw_data.variable_name_list = variable_name_list;
raw_data.variable_type_list = variable_type_list;
raw_data.num_variables = NumVars;
end
else
try fclose( fid ); catch, end
error( 'Simulation type (%s) not currently supported', simulation_type );
end
if downsamp_N == 1
raw_data.conversion_notes = 'Converted from ASCII format';
else
raw_data.conversion_notes = sprintf( 'Converted from ASCII format. Downsampled from %.0f to %.0f points', NumPnts, NumPnts_DS );
end
else
try fclose( fid ); catch, end
error( 'Format error in LTspice file "%s" ... Data type ID tag not found', filename );
end
try fclose( fid ); catch, end
% Deal with potential compression in Transient Analysis simulations
if strcmpi( simulation_type, '.tran' ) && ... % Check to see if the time vector is monotonically increasing.
(isvector(raw_data.time_vect) && (min(diff(raw_data.time_vect)) < 0.0) || ...
~isvector(raw_data.time_vect) && (min(min(diff(raw_data.time_vect, 1, 2))) < 0.0))
if downsamp_N ~= 1 % If we have already downsampled then we can't uncompress.
raw_data.time_vect = abs(raw_data.time_vect);
else
% The binary file contains 2nd order compression ... use 2nd-order interpolation to add data points in the vicinity of negative time points
if step_flag
warning( 'LTspice2Matlab:stepCompressed', 'Stepped simulations in combination with compression might not be read correctly. Consider not using compression.' );
end
t_vect = raw_data.time_vect; % We will add in the offset later.
neg_pnt_index = find( t_vect < 0.0 & [0,ones(1,length(t_vect)-1)] );
t_vect = abs(t_vect);
x1 = t_vect(neg_pnt_index-1); x2 = t_vect(neg_pnt_index); x3 = t_vect(neg_pnt_index+1);
x_new = [(2*x1 + x2)/3; (x1 + 2*x2)/3; (2*x2 + x3)/3; (x2 + 2*x3)/3]; %New sample points
t_vect_big = NaN*zeros(6,length(t_vect));
t_vect_big(1,:) = t_vect;
t_vect_big(4,neg_pnt_index) = t_vect(neg_pnt_index);
t_vect_big(1,neg_pnt_index) = NaN;
t_vect_big([2 3 5 6],neg_pnt_index) = x_new;
full_index = find(~isnan(t_vect_big));
time_vect_new = t_vect_big(full_index).'; % This is the new time vector with the inserted points.
t_vect_big([1,4],:) = NaN;
nan_vect = isnan(t_vect_big(full_index));
new_index = find( ~nan_vect ); % Index into time_vect_new indicating the new points only.
old_index = find( nan_vect );
clear t_vect t_vect_big full_index nan_vect;
x1sqr = repmat( x1.^2, [4,1] ); x2sqr = repmat( x2.^2, [4,1] ); x3sqr = repmat( x3.^2, [4,1] );
x1 = repmat( x1, [4,1] ); x2 = repmat( x2, [4,1] ); x3 = repmat( x3, [4,1] );
denom = (x1sqr-x2sqr).*(x2-x3) - (x2sqr-x3sqr).*(x1-x2);
r1 = (x_new.^2 - x1sqr)./denom;
r2 = (x_new - x1)./denom;
p1 = (x2-x3).*r1 - (x2sqr-x3sqr).*r2;
p3 = (x1-x2).*r1 - (x1sqr-x2sqr).*r2;
p2 = -p1 - p3;
p1 = p1 + 1;
clear x_new x1sqr x2sqr x3sqr x1 x2 x3 denom r1 r2;
raw_data.variable_mat(:,end+1:length(time_vect_new)) = 0.0; % Init the memory
for k=1:size(raw_data.variable_mat,1)
y_vect = raw_data.variable_mat(k,1:length(raw_data.time_vect));
raw_data.variable_mat(k,old_index) = y_vect;
y_new = repmat(y_vect(neg_pnt_index-1),[4,1]).*p1 + repmat(y_vect(neg_pnt_index),[4,1]).*p2 + repmat(y_vect(neg_pnt_index+1),[4,1]).*p3;
raw_data.variable_mat(k,new_index) = y_new(:).';
end
raw_data.time_vect = time_vect_new;
clear time_vect_new y_vect y_new new_index old_index neg_pnt_index p1 p2 p3;
raw_data.conversion_notes = sprintf( 'Converted from Binary format with 2nd Order compression. Upsampled waveforms from %.0f to %.0f points', ...
raw_data.num_data_pnts, length(raw_data.time_vect) );
raw_data.num_data_pnts = length(raw_data.time_vect);
end
end
if isfield( raw_data, 'time_vect' )
raw_data.time_vect = raw_data.time_vect + general_offset;
elseif isfield( raw_data, 'freq_vect' )
raw_data.freq_vect = raw_data.freq_vect + general_offset;
elseif isfield( raw_data, 'source_vect' )
raw_data.source_vect = raw_data.source_vect + general_offset;
elseif isfield( raw_data, 'param_vect' )
raw_data.param_vect = raw_data.param_vect + general_offset;
end