-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhownet_bert.py
281 lines (238 loc) · 11.2 KB
/
hownet_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import torch
import math
import torch.nn as nn
import torch.optim as optim
import args
from numpy import *
from util_for_bert import *
from tqdm import tqdm_notebook, tqdm
from torch.nn import functional as F
from sklearn import metrics
from torch.optim.lr_scheduler import ExponentialLR, MultiStepLR
import numpy as np
import torch
import args
from transformers import BertTokenizer, BertConfig, BertForMaskedLM, BertForNextSentencePrediction
from transformers import BertModel
from torch.nn import functional as F
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.nn import functional as F
import args
from transformers import BertTokenizer, BertConfig, BertForMaskedLM, BertForNextSentencePrediction
from transformers import BertModel
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def length_to_mask(lengths):
a = torch.zeros(lengths.shape, dtype=torch.int64)
mask = a == lengths
return mask
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=args.max_len):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = torch.transpose(x, 0, 1)
x = x + self.pe[:x.size(0), :]
return x
class BERT(nn.Module):
def __init__(self):
super(BERT, self).__init__()
self.model_name = "hfl/chinese-bert-wwm-ext"
self.MODEL_PATH = './chinese-bert-wwm-ext/'
self.tokenizer = BertTokenizer.from_pretrained(self.model_name)
self.model_config = BertConfig.from_pretrained(self.model_name)
self.model_config.output_hidden_states = True
self.model_config.output_attentions = True
self.bert_model = BertModel.from_pretrained(self.MODEL_PATH, config=self.model_config)
def tokenization(self,word):
# sent_code = self.tokenizer.encode_plus([sentence])
# sent_code = self.tokenizer.tokenize(sentence)
ids = [self.tokenizer.convert_tokens_to_ids(word)]
# input_ids = sent_code['input_ids']
attention_mask = [1] * len(ids)
padding = [0] * (args.max_len - len(ids))
if len(ids) > args.max_len:
input_ids = ids[:args.max_len]
attention_mask = attention_mask[:args.max_len]
else:
ids += padding
attention_mask += padding
return ids,attention_mask
def bert_word_embed(self,ids,mask):
if len(ids) == 1:
tokens_tensor = torch.tensor([ids])
mask_tensors = torch.tensor([mask])
self.bert_model.eval()
with torch.no_grad():
outputs = self.bert_model(tokens_tensor, attention_mask=mask_tensors)
last_hidden_state = outputs['last_hidden_state']
return last_hidden_state.squeeze()
else:
tokens_tensor = torch.tensor([ids])
mask_tensors = torch.tensor([mask])
self.bert_model.eval()
with torch.no_grad():
outputs = self.bert_model(tokens_tensor, attention_mask=mask_tensors)
pooler_output = outputs['pooler_output']
return pooler_output.squeeze()
def word_embed(self, sentences):
sentences_embed = []
mask_list = []
for sentence in sentences:
sentence_embed = []
for word in list(sentence):
ids,masks = self.tokenization(word)
word_embed = self.bert_word_embed(ids,masks)
sentence_embed.append(word_embed)
last_hidden_stat = torch.stack(sentence_embed, 0).squeeze()
if last_hidden_stat.shape[0]>=args.max_len:
last_hidden_stat = last_hidden_stat[:args.max_len,:]
mask_list.append([True] * args.max_len)
else:
mask_list.append([True] * last_hidden_stat.shape[0] + [False] * (max_len - last_hidden_stat.shape[0]))
pad = torch.nn.ZeroPad2d(padding=(0,0,0,args.max_len-last_hidden_stat.shape[0]))
sentences_embed.append(pad(last_hidden_stat).unsqueeze(0))
return torch.cat(sentences_embed,0),torch.LongTensor(mask_list)
class M1(nn.Module):
def __init__(self, hidden_dim, num_class):
super(M1, self).__init__()
self.embedding_dim = 768
self.hidden_dim = hidden_dim
self.num_class = num_class
self.bert_embeds = BERT()
self.bn_embeds = nn.BatchNorm1d(self.embedding_dim)
self.position_embedding = PositionalEncoding(self.embedding_dim)
encoder_layer1 = nn.TransformerEncoderLayer(self.embedding_dim, 4, dim_feedforward=512, dropout=0.1,
activation='relu')
self.transformer = nn.TransformerEncoder(encoder_layer1, 8)
self.alpha = nn.Parameter(torch.tensor([1], dtype=torch.float), requires_grad=True)
self.att_fc = nn.Linear(4 * max_len, max_len)
self.lstm = nn.LSTM(self.embedding_dim, self.hidden_dim, batch_first=True, bidirectional=True)
self.lr = nn.Linear(200, 100)
self.fc = nn.Sequential(
nn.Linear(8292, 1000),
nn.Linear(1000, self.num_class)
)
def apply_multiple(self, x):
# input: batch_size * seq_len * (2 * hidden_size)
p1 = F.avg_pool1d(x.transpose(1, 2), x.size(1)).squeeze(-1)
p2 = F.max_pool1d(x.transpose(1, 2), x.size(1)).squeeze(-1)
# output: batch_size * (4 * hidden_size)
return torch.cat([p1, p2], 1)
def soft_attention_align(self, x1, x2, mat):
a1 = torch.matmul(x1, x2.transpose(1, 2))
b1 = self.alpha * mat
attention = a1 + b1
weight1 = F.softmax(attention, dim=-1)
x1_align = torch.matmul(weight1, x2)
weight2 = F.softmax(attention.transpose(1, 2), dim=-1)
x2_align = torch.matmul(weight2, x1)
return x1_align, x2_align
def forward(self, sent1, sent2, label, mat, is_train=True):
# embeds: batch_size * seq_len => batch_size * seq_len * dim
# x1 = self.bn_embeds(self.embeds(sent1).transpose(1, 2).contiguous()).transpose(1, 2)
# x2 = self.bn_embeds(self.embeds(sent2).transpose(1, 2).contiguous()).transpose(1, 2)
x1,mask1 = self.bert_embeds.word_embed(sent1)
x2,mask2 = self.bert_embeds.word_embed(sent2)
x1_ = self.position_embedding(x1)
tf_1 = self.transformer(x1_, src_key_padding_mask=mask1)
x1_tf = tf_1.transpose(0, 1)
x2_ = self.position_embedding(x2)
tf_2 = self.transformer(x2_, src_key_padding_mask=mask2)
x2_tf = tf_2.transpose(0, 1)
x_1, x_2 = self.soft_attention_align(x1_tf, x2_tf, mat)
row = torch.sum(mat, dim=1)
line = torch.sum(mat, dim=2)
o1, _ = self.lstm(x_1)
o2, _ = self.lstm(x_2)
row_ = row.unsqueeze(-1)
line_ = line.unsqueeze(-1)
output1 = torch.cat([x1_tf, o1], dim=2)
output2 = torch.cat([x2_tf, o2], dim=2)
q1_rep = self.apply_multiple(output1)
q2_rep = self.apply_multiple(output2)
m = self.lr(torch.cat([line, row], dim=-1).float())
x = torch.cat([q1_rep, q2_rep, q1_rep - q2_rep, q1_rep * q2_rep, m], -1)
# batch_size * seq_len * dim => batch_size * seq_len * hidden_size
logits = self.fc(x)
out = torch.softmax(logits, 1)
if is_train:
loss1 = nn.CrossEntropyLoss()
loss_1 = loss1(out, label)
# loss2 = cosent(lam=20)
# out = out[:,1]
# loss_2 = loss2(out,label)
out = torch.argmax(out, 1)
return loss_1, out, self.alpha
else:
out = torch.argmax(out, 1)
return out
if __name__ == '__main__':
Model = M1(hidden_dim=args.hidden_dim, num_class=args.class_size)
train_dataset = LoadData('data/chinese/bq_corpus/train.txt')
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, collate_fn=collate, shuffle=True,
drop_last=False)
print('train data has been loaded')
test_dataset = LoadData('data/chinese/bq_corpus/test.txt')
test_loader = DataLoader(test_dataset, batch_size=50, collate_fn=collate, shuffle=True, drop_last=True)
print('test data has been loaded')
optimizer = optim.Adam([{"params": Model.parameters()}],
lr=1e-2)
scheduler = MultiStepLR(optimizer, milestones=[20, 50, 80, 100, 150], gamma=0.8)
total_params = sum(p.numel() for p in Model.parameters())
LOSS = nn.CrossEntropyLoss()
print(f'{total_params:,} total parameters.')
total_trainable_params = sum(
p.numel() for p in Model.parameters() if p.requires_grad)
print(f'{total_trainable_params:,} training parameters.')
print('start training ....')
best_acc = 0
best_epoch = 0
for epoch in range(args.epoch):
process_bar = tqdm(train_loader, leave=False)
loss = 0
train_acc = 0
train_res = []
a = 0
for sent1, sent2, label, mat in process_bar:
loss, output, alpha = Model(sent1, sent2, label, mat)
optimizer.zero_grad()
a = alpha.item()
label = label
output = output.long()
correct_prediction = torch.eq(output, label)
train_accuracy = correct_prediction.float()
train_acc = torch.mean(train_accuracy, dim=0).item()
train_res.append(train_acc)
loss.backward()
optimizer.step()
scheduler.step()
print("alpha=%.6f" % a)
print('epoch={},loss={},train_acc = {}'.format(epoch, loss.item(), mean(train_res)))
res = []
f1s = []
for sent1, s1_mask, sent2, s2_mask, mat, label in test_loader:
output = Model(sent1, s1_mask, sent2, s2_mask, mat, label, is_train=False)
label = label
output = output.long()
correct_prediction = torch.eq(output, label)
test_accuracy = correct_prediction.float()
test_acc = torch.mean(test_accuracy, dim=0).item()
res.append(test_acc)
f1 = metrics.f1_score(label.cpu(), output.cpu())
f1s.append(f1)
if mean(res) > best_acc and epoch > 20:
best_acc = mean(res)
best_epoch = epoch + 1
# torch.save(Model.state_dict(), './data/models/bq/2-{}-{}.pth'.format(best_epoch, best_acc))
print('epoch =', epoch + 1, 'test_acc=', mean(res), 'f1=', mean(f1s), ' best acc epoch:', best_epoch,
' best acc:', best_acc)
if epoch % 20 == 0:
torch.save(Model.state_dict(), './data/models/bq/8-{}-{}.pth'.format(epoch, mean(res)))