Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target. Note: The solution set must not contain duplicate quadruplets.
For example, given array S = [1, 0, -1, 0, -2, 2], and target = 0.
A solution set is:
[
[-1, 0, 0, 1],
[-2, -1, 1, 2],
[-2, 0, 0, 2]
]
思路: 二分查找真是神器啊!!!!!
/**
* @param {number[]} nums
* @param {number} target
* @return {number[][]}
*/
var fourSum = function(nums, target) {
if(nums.length < 4) {
return [];
}
nums.sort(function(a, b) {
return a - b;
});
var result = [];
var dic = {};
var temp;
var i, j, k, l = nums.length;
for (i = 0; i < l - 3; i++) {
for (j = i + 1; j < l - 2; j++) {
for (k = j + 1; k < l - 1; k++) {
var remain = target - nums[i] - nums[j] - nums[k];
if (binarySearch(nums, k + 1, l - 1, remain)) {
temp = '' + nums[i] + nums[j] + nums[k] + remain;
if (!dic[temp]) {
result.push([nums[i], nums[j], nums[k], remain]);
dic[temp] = 1;
}
}
}
}
}
return result;
};
var binarySearch = function (nums, i, j, target) {
while (i <= j) {
index = Math.floor( (i + j) / 2);
if (nums[index] === target) {
return true;
} else if (nums[index] > target) {
j = index - 1;
} else {
i = index + 1;
}
}
return false;
};