-
Notifications
You must be signed in to change notification settings - Fork 60
/
btc_historical_csv.py
49 lines (38 loc) · 1.45 KB
/
btc_historical_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import csv
import json
import os
import pandas as pd
from binance.client import Client
# init
api_key = os.environ.get('binance_api')
api_secret = os.environ.get('binance_secret')
client = Client(api_key, api_secret)
## main
# valid intervals - 1m, 3m, 5m, 15m, 30m, 1h, 2h, 4h, 6h, 8h, 12h, 1d, 3d, 1w, 1M
# get timestamp of earliest date data is available
timestamp = client._get_earliest_valid_timestamp('BTCUSDT', '1d')
print(timestamp)
# request historical candle (or klines) data
bars = client.get_historical_klines('BTCUSDT', '1d', timestamp, limit=1000)
# print(bars)
# option 1 - save to file using json method - this will retain Python format (list of lists)
with open('btc_bars.json', 'w') as e:
json.dump(bars, e)
# option 2 - save as CSV file using the csv writer library
with open('btc_bars.csv', 'w', newline='') as f:
wr = csv.writer(f)
for line in bars:
wr.writerow(line)
# option 3 - save as CSV file without using a library. Shorten to just date, open, high, low, close
with open('btc_bars2.csv', 'w') as d:
for line in bars:
d.write(f'{line[0]}, {line[1]}, {line[2]}, {line[3]}, {line[4]}\n')
# delete unwanted data - just keep date, open, high, low, close
for line in bars:
del line[5:]
# option 4 - create a Pandas DataFrame and export to CSV
btc_df = pd.DataFrame(bars, columns=['date', 'open', 'high', 'low', 'close'])
btc_df.set_index('date', inplace=True)
print(btc_df.head())
# export DataFrame to csv
btc_df.to_csv('btc_bars3.csv')