-
Notifications
You must be signed in to change notification settings - Fork 1
/
learning pathways birthing
92 lines (75 loc) · 2.59 KB
/
learning pathways birthing
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import json
import os
# Function to load data from a file
def load_data(file_path):
with open(file_path, 'r') as file:
data = json.load(file)
return data
# Function to evaluate data against a set of rules
def evaluate_data(data, rules):
results = {}
for key, value in rules.items():
results[key] = []
for entry in data:
if entry[key] == value: # Simple equality check for demonstration
results[key].append(entry)
return results
# Function to create chain codes based on evaluation results
def create_chain_codes(results):
git add .
git commit -m "Initial project structure and setup"
git push origin main
chain_codes = {}
for key, value in results.items():
chain_codes[key] = len(value) # Count the number of matching entries as chain code
return chain_codes
# Main function to tie everything together
def main(data_file, rules_file):
# Load data and rules
data = load_data(data_file)
with open(rules_file, 'r') as file:
rules = json.load(file)
# Evaluate data
results = evaluate_data(data, rules)
# Create chain codes
chain_codes = create_chain_codes(results)
# Output the chain codes
print("Chain Codes:", chain_codes)
if __name__ == "__main__":
# Define paths to your data file and rules file
DATA_FILE = 'path_to_your_data_file.json'
RULES_FILE = 'path_to_your_rules_file.json'
main(DATA_FILE, RULES_FILE)import pandas as pd
import hashlib
import os
# Function to read data from CSV or other data source
def load_data(file_path):
data = pd.read_csv(file_path)
return data
# Function to perform data analysis
def analyze_data(data):
# Example analysis: Calculate basic statistics
analysis_results = {
'mean': data.mean(),
'std_dev': data.std(),
'min': data.min(),
'max': data.max()
}
return analysis_results
# Function to create chain codes
def create_chain_codes(data):
# Example: Generate hash codes (e.g., SHA-256) for each row
data['chain_code'] = data.apply(lambda row: hashlib.sha256(str(row).encode()).hexdigest(), axis=1)
return data
# Path to the data file
file_path = 'path_to_your_data_file.csv'
# Load data
data = load_data(file_path)
# Analyze data
analysis_results = analyze_data(data)
print("Data Analysis Results:", analysis_results)
# Create chain codes
data_with_chain_codes = create_chain_codes(data)
print("Data with Chain Codes:", data_with_chain_codes)
# Optionally, save the result with chain codes back to a new file
data_with_chain_codes.to_csv('data_with_chain_codes.csv', index=False)