From 6a7b028ef1e28b03dc85e593f378ecfe0e7244b9 Mon Sep 17 00:00:00 2001 From: Raphael-Tresor <40422324+Raphael-Tresor@users.noreply.github.com> Date: Thu, 9 Jan 2025 13:23:05 +0100 Subject: [PATCH] tests base functions --- test/distributions/tensor_dirichlet_test.jl | 174 +++++++++++++------- 1 file changed, 110 insertions(+), 64 deletions(-) diff --git a/test/distributions/tensor_dirichlet_test.jl b/test/distributions/tensor_dirichlet_test.jl index 9b5181e4..c362498c 100644 --- a/test/distributions/tensor_dirichlet_test.jl +++ b/test/distributions/tensor_dirichlet_test.jl @@ -29,10 +29,6 @@ end end -@testitem "TensorDirichlet: mean(::typeof(log))" begin - # mean log is now part of the closeForm package and the implementation of this should no more be part of this - -end @testitem "TensorDirichlet: var" begin include("distributions_setuptests.jl") @@ -57,6 +53,52 @@ end end +@testitem "TensorDirichlet: mean" begin + include("distributions_setuptests.jl") + + for rank in (3, 5) + for d in (2, 5, 10) + for _ in 1:10 + alpha = rand([d for _ in 1:rank]...) + + distribution = TensorDirichlet(alpha) + mat_of_dir = Dirichlet.(eachslice(alpha, dims = Tuple(2:rank))) + + temp = mean.(mat_of_dir) + mat_mean = similar(alpha) + for i in CartesianIndices(Base.tail(size(alpha))) + mat_mean[:, i] = temp[i] + end + @test mean(distribution) ≈ mat_mean + end + end + end + +end + +@testitem "TensorDirichlet: std" begin + include("distributions_setuptests.jl") + + for rank in (3, 5) + for d in (2, 5, 10) + for _ in 1:10 + alpha = rand([d for _ in 1:rank]...) + + distribution = TensorDirichlet(alpha) + mat_of_dir = Dirichlet.(eachslice(alpha, dims = Tuple(2:rank))) + + temp = std.(mat_of_dir) + mat_std = similar(alpha) + for i in CartesianIndices(Base.tail(size(alpha))) + mat_std[:, i] = temp[i] + end + @test std(distribution) ≈ mat_std + end + end + end + +end + @testitem "TensorDirichlet: cov" begin include("distributions_setuptests.jl") @@ -209,40 +251,56 @@ end @testitem "TensorDirichlet: prod with PreserveTypeProd{Distribution}" begin include("distributions_setuptests.jl") - tensorDiri = Matrix{Vector{Float64}}(undef, (2, 2)) - for i in eachindex(tensorDiri) - tensorDiri[i] = Vector{Float64}(undef, 2) - tensorDiri[i] = ones(2) .* 2 - end - - result = Matrix{Vector{Float64}}(undef, (2, 2)) - for i in eachindex(tensorDiri) - result[i] = Vector{Float64}(undef, 2) - result[i] = ones(2) .* 3 + for rank in (3, 5) + for d in (2, 5, 10) + for _ in 1:10 + alpha1 = rand([d for _ in 1:rank]...) .+ 1 + alpha2 = rand([d for _ in 1:rank]...) .+ 1 + distribution1 = TensorDirichlet(alpha1) + distribution2 = TensorDirichlet(alpha2) + + mat_of_dir_1 = Dirichlet.(eachslice(alpha1, dims = Tuple(2:rank))) + mat_of_dir_2 = Dirichlet.(eachslice(alpha2, dims = Tuple(2:rank))) + dim = rank-1 + + prod_temp = Array{Dirichlet,dim}(undef, Base.tail(size(alpha1))) + for i in CartesianIndices(Base.tail(size(alpha1))) + prod_temp[i] = prod(PreserveTypeProd(Distribution),mat_of_dir_1[i],mat_of_dir_2[i]) + end + mat_prod = similar(alpha1) + for i in CartesianIndices(Base.tail(size(alpha1))) + mat_prod[:,i] = prod_temp[i].alpha + end + @test @inferred(prod(PreserveTypeProd(Distribution),distribution1,distribution2)) ≈ TensorDirichlet(mat_prod) + end + end end - - @test_broken @inferred(prod(PreserveTypeProd(Distribution), TensorDirichlet(tensorDiri), TensorDirichlet(tensorDiri))) == TensorDirichlet(result) end @testitem "TensorDirichlet: rand" begin include("distributions_setuptests.jl") - a = [1.0, 1.0] - b = [1.2, 3.3] - c = [0.2, 3.4] - d = [4.0, 5.0] - - tensorDiri = Array{Float64, 3}(undef, (2, 2, 2)) + for rank in (3, 5) + for d in (2, 5, 10) + for _ in 1:10 + alpha = rand([d for _ in 1:rank]...) - tensorDiri[:, 1, 1] = a - tensorDiri[:, 1, 2] = b - tensorDiri[:, 2, 1] = c - tensorDiri[:, 2, 2] = d + distribution = TensorDirichlet(alpha) + mat_of_dir = Dirichlet.(eachslice(alpha, dims = Tuple(2:rank))) - @test typeof(rand(TensorDirichlet(tensorDiri))) <: Array{Float64, 3} - @test size(rand(TensorDirichlet(tensorDiri))) == (2, 2, 2) - @test typeof(rand(TensorDirichlet(tensorDiri), 3)) <: AbstractVector{Array{Float64, 3}} - @test size(rand(TensorDirichlet(tensorDiri), 3)) == (3,) + temp = var.(mat_of_dir) + mat_var = similar(alpha) + for i in CartesianIndices(Base.tail(size(alpha))) + mat_var[:, i] = temp[i] + end + @test typeof(rand(distribution)) <: Array{Float64, rank} + @test size(rand(distribution)) == size(alpha) + @test typeof(rand(distribution, 3)) <: AbstractVector{Array{Float64, rank}} + @test size(rand(distribution, 3)) == (3,) + end + end + end + end @testitem "TensorDirichlet: vague" begin @@ -262,43 +320,31 @@ end @testitem "TensorDirichlet: NaturalParametersSpace" begin include("distributions_setuptests.jl") - a = [1.0, 1.0] - b = [1.2, 3.3] - c = [0.2, 3.4] - d = [4.0, 5.0] - - tensorDiri = Matrix{Vector{Float64}}(undef, (2, 2)) - for i in eachindex(tensorDiri) - tensorDiri[i] = Vector{Float64}(undef, 2) - end - - tensorDiri[1] = a - tensorDiri[2] = b - tensorDiri[3] = c - tensorDiri[4] = d - logPartitionDirichlet = getlogpartition(NaturalParametersSpace(), Dirichlet) + logPartitionTensor = getlogpartition(NaturalParametersSpace(), TensorDirichlet) + grad = getgradlogpartition(NaturalParametersSpace(), Dirichlet) + gradTensor = getgradlogpartition(NaturalParametersSpace(), TensorDirichlet) + info = getfisherinformation(NaturalParametersSpace(), Dirichlet) + infoTensor = getfisherinformation(NaturalParametersSpace(), TensorDirichlet) - @test getlogpartition(NaturalParametersSpace(), TensorDirichlet)(tensorDiri) == - logPartitionDirichlet(a) + logPartitionDirichlet(b) + logPartitionDirichlet(c) + logPartitionDirichlet(d) - - gradLogPartition = Matrix{Vector{Float64}}(undef, (2, 2)) - for i in eachindex(gradLogPartition) - gradLogPartition[i] = Vector{Float64}(undef, 2) + for rank in (3, 5) + for d in (2, 5, 10) + for _ in 1:10 + + alpha = rand([d for _ in 1:rank]...) + distribution = TensorDirichlet(alpha) + (naturalParam,) = unpack_parameters(TensorDirichlet, alpha) + + mat_logPartition = sum(logPartitionDirichlet.(eachslice(alpha, dims = Tuple(2:rank)))) + mat_grad = grad.(eachslice(alpha, dims = Tuple(2:rank))) + mat_info = sum(info.(eachslice(alpha, dims = Tuple(2:rank)))) + + @test logPartitionTensor(naturalParam) ≈ mat_logPartition + @test gradTensor(naturalParam) ≈ mat_grad + @test infoTensor(naturalParam) ≈ mat_info + end + end end - - grad = getgradlogpartition(NaturalParametersSpace(), Dirichlet) - - gradLogPartition[1] = grad(a) - gradLogPartition[2] = grad(b) - gradLogPartition[3] = grad(c) - gradLogPartition[4] = grad(d) - - @test getgradlogpartition(NaturalParametersSpace(), TensorDirichlet)(tensorDiri) == gradLogPartition - - info = getfisherinformation(NaturalParametersSpace(), Dirichlet) - - @test getfisherinformation(NaturalParametersSpace(), TensorDirichlet)(tensorDiri) == info(a) + info(b) + info(c) + info(d) end @testitem "TensorDirichlet: logpdf" begin