-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun_experiments.py
367 lines (299 loc) · 14.2 KB
/
run_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import marinenav_env.envs.marinenav_env as marinenav_env
from policy.agent import Agent
import numpy as np
import copy
import scipy.spatial
import json
from datetime import datetime
import time as t_module
import os
import matplotlib.pyplot as plt
import APF
import sys
sys.path.insert(0,"./thirdparty")
import RVO
def evaluation(state, agent, eval_env, use_rl=True, use_iqn=True, act_adaptive=True, save_episode=False):
"""Evaluate performance of the agent
"""
rob_num = len(eval_env.robots)
rewards = [0.0]*rob_num
times = [0.0]*rob_num
energies = [0.0]*rob_num
computation_times = []
end_episode = False
length = 0
while not end_episode:
# gather actions for robots from agents
action = []
for i,rob in enumerate(eval_env.robots):
if rob.deactivated:
action.append(None)
continue
assert rob.cooperative, "Every robot must be cooperative!"
start = t_module.time()
if use_rl:
if use_iqn:
if act_adaptive:
a,_,_,_ = agent.act_adaptive(state[i])
else:
a,_,_ = agent.act(state[i])
else:
a,_ = agent.act_dqn(state[i])
else:
a = agent.act(state[i])
end = t_module.time()
computation_times.append(end-start)
action.append(a)
# execute actions in the training environment
state, reward, done, info = eval_env.step(action)
for i,rob in enumerate(eval_env.robots):
if rob.deactivated:
continue
assert rob.cooperative, "Every robot must be cooperative!"
rewards[i] += agent.GAMMA ** length * reward[i]
times[i] += rob.dt * rob.N
energies[i] += rob.compute_action_energy_cost(action[i])
if rob.collision or rob.reach_goal:
rob.deactivated = True
end_episode = (length >= 360) or eval_env.check_all_deactivated()
length += 1
success = True if eval_env.check_all_reach_goal() else False
# success = 0
# for rob in eval_env.robots:
# if rob.reach_goal:
# success += 1
# save time and energy data of robots that reach goal
success_times = []
success_energies = []
for i,rob in enumerate(eval_env.robots):
if rob.reach_goal:
success_times.append(times[i])
success_energies.append(energies[i])
if save_episode:
trajectories = []
for rob in eval_env.robots:
trajectories.append(copy.deepcopy(rob.trajectory))
return success, rewards, computation_times, success_times, success_energies, trajectories
else:
return success, rewards, computation_times, success_times, success_energies
def exp_setup(envs,eval_schedule,i):
observations = []
for test_env in envs:
test_env.num_cooperative = eval_schedule["num_cooperative"][i]
test_env.num_non_cooperative = eval_schedule["num_non_cooperative"][i]
test_env.num_cores = eval_schedule["num_cores"][i]
test_env.num_obs = eval_schedule["num_obstacles"][i]
test_env.min_start_goal_dis = eval_schedule["min_start_goal_dis"][i]
# save eval config
state,_,_ = test_env.reset()
observations.append(state)
return observations
def dashboard(eval_schedule,i):
print("\n======== eval schedule ========")
print("num of cooperative agents: ",eval_schedule["num_cooperative"][i])
print("num of non-cooperative agents: ",eval_schedule["num_non_cooperative"][i])
print("num of cores: ",eval_schedule["num_cores"][i])
print("num of obstacles: ",eval_schedule["num_obstacles"][i])
print("min start goal dis: ",eval_schedule["min_start_goal_dis"][i])
print("======== eval schedule ========\n")
def run_experiment(eval_schedules):
agents = [adaptive_IQN_agent,IQN_agent,DQN_agent,APF_agent,RVO_agent]
names = ["adaptive_IQN","IQN","DQN","APF","RVO"]
envs = [test_env_0,test_env_1,test_env_2,test_env_3,test_env_4]
evaluations = [evaluation,evaluation,evaluation,evaluation,evaluation]
colors = ["b","g","r","tab:orange","m"]
save_trajectory = True
dt = datetime.now()
timestamp = dt.strftime("%Y-%m-%d-%H-%M-%S")
robot_nums = []
# all_test_rob_exp = []
all_successes_exp = []
all_rewards_exp = []
all_success_times_exp = []
all_success_energies_exp =[]
if save_trajectory:
all_trajectories_exp = []
all_eval_configs_exp = []
for idx,count in enumerate(eval_schedules["num_episodes"]):
dashboard(eval_schedules,idx)
robot_nums.append(eval_schedules["num_cooperative"][idx])
# all_test_rob = [0]*len(agents)
all_successes = [[] for _ in agents]
all_rewards = [[] for _ in agents]
all_computation_times = [[] for _ in agents]
all_success_times = [[] for _ in agents]
all_success_energies = [[] for _ in agents]
if save_trajectory:
all_trajectories = [[] for _ in agents]
all_eval_configs = [[] for _ in agents]
for i in range(count):
print("Evaluating all agents on episode ",i)
observations = exp_setup(envs,eval_schedules,idx)
for j in range(len(agents)):
agent = agents[j]
env = envs[j]
eval_func = evaluations[j]
name = names[j]
if save_trajectory:
all_eval_configs[j].append(env.episode_data())
# obs = env.reset()
obs = observations[j]
if save_trajectory:
if name == "adaptive_IQN":
success, rewards, computation_times, success_times, success_energies, trajectories = eval_func(obs,agent,env,save_episode=True)
elif name == "IQN":
success, rewards, computation_times, success_times, success_energies, trajectories = eval_func(obs,agent,env,act_adaptive=False,save_episode=True)
elif name == "DQN":
success, rewards, computation_times, success_times, success_energies, trajectories = eval_func(obs,agent,env,use_iqn=False,save_episode=True)
elif name == "APF":
success, rewards, computation_times, success_times, success_energies, trajectories = eval_func(obs,agent,env,use_rl=False,save_episode=True)
elif name == "RVO":
success, rewards, computation_times, success_times, success_energies, trajectories = eval_func(obs,agent,env,use_rl=False,save_episode=True)
else:
raise RuntimeError("Agent not implemented!")
else:
if name == "adaptive_IQN":
success, rewards, computation_times, success_times, success_energies = eval_func(obs,agent,env)
elif name == "IQN":
success, rewards, computation_times, success_times, success_energies = eval_func(obs,agent,env,act_adaptive=False)
elif name == "DQN":
success, rewards, computation_times, success_times, success_energies = eval_func(obs,agent,env,use_iqn=False)
elif name == "APF":
success, rewards, computation_times, success_times, success_energies = eval_func(obs,agent,env,use_rl=False)
elif name == "RVO":
success, rewards, computation_times, success_times, success_energies = eval_func(obs,agent,env,use_rl=False)
else:
raise RuntimeError("Agent not implemented!")
all_successes[j].append(success)
# all_test_rob[j] += eval_schedules["num_cooperative"][idx]
# all_successes[j] += success
all_rewards[j] += rewards
all_computation_times[j] += computation_times
all_success_times[j] += success_times
all_success_energies[j] += success_energies
if save_trajectory:
all_trajectories[j].append(copy.deepcopy(trajectories))
for k,name in enumerate(names):
s_rate = np.sum(all_successes[k])/len(all_successes[k])
# s_rate = all_successes[k]/all_test_rob[k]
avg_r = np.mean(all_rewards[k])
avg_compute_t = np.mean(all_computation_times[k])
avg_t = np.mean(all_success_times[k])
avg_e = np.mean(all_success_energies[k])
print(f"{name} | success rate: {s_rate:.2f} | avg_reward: {avg_r:.2f} | avg_compute_t: {avg_compute_t} | \
avg_t: {avg_t:.2f} | avg_e: {avg_e:.2f}")
print("\n")
# all_test_rob_exp.append(all_test_rob)
all_successes_exp.append(all_successes)
all_rewards_exp.append(all_rewards)
all_success_times_exp.append(all_success_times)
all_success_energies_exp.append(all_success_energies)
if save_trajectory:
all_trajectories_exp.append(copy.deepcopy(all_trajectories))
all_eval_configs_exp.append(copy.deepcopy(all_eval_configs))
# save data
if save_trajectory:
exp_data = dict(eval_schedules=eval_schedules,
names=names,
all_successes_exp=all_successes_exp,
all_rewards_exp=all_rewards_exp,
all_success_times_exp=all_success_times_exp,
all_success_energies_exp=all_success_energies_exp,
all_trajectories_exp=all_trajectories_exp,
all_eval_configs_exp=all_eval_configs_exp
)
else:
exp_data = dict(eval_schedules=eval_schedules,
names=names,
all_successes_exp=all_successes_exp,
all_rewards_exp=all_rewards_exp,
all_success_times_exp=all_success_times_exp,
all_success_energies_exp=all_success_energies_exp,
)
exp_dir = f"experiment_data/exp_data_{timestamp}"
os.makedirs(exp_dir)
filename = os.path.join(exp_dir,"exp_results.json")
with open(filename,"w") as file:
json.dump(exp_data,file)
fig1, ax1 = plt.subplots()
fig2, ax2 = plt.subplots()
fig3, ax3 = plt.subplots()
bar_width = 0.25
interval_scale = 1.5
set_label = [True]*len(names)
for i,robot_num in enumerate(robot_nums):
all_successes = all_successes_exp[i]
all_success_times = all_success_times_exp[i]
all_success_energies = all_success_energies_exp[i]
for j,pos in enumerate([-2*bar_width,-bar_width,0.0,bar_width,2*bar_width]):
# bar plot for success rate
s_rate = np.sum(all_successes[j])/len(all_successes[j])
if set_label[j]:
ax1.bar(interval_scale*i+pos,s_rate,0.8*bar_width,color=colors[j],label=names[j])
set_label[j] = False
else:
ax1.bar(interval_scale*i+pos,s_rate,0.8*bar_width,color=colors[j])
# box plot for time
box = ax2.boxplot(all_success_times[j],positions=[interval_scale*i+pos],flierprops={'marker': '.','markersize': 1},patch_artist=True)
for patch in box["boxes"]:
patch.set_facecolor(colors[j])
for line in box["medians"]:
line.set_color("black")
# box plot for energy
box = ax3.boxplot(all_success_energies[j],positions=[interval_scale*i+pos],flierprops={'marker': '.','markersize': 1},patch_artist=True)
for patch in box["boxes"]:
patch.set_facecolor(colors[j])
for line in box["medians"]:
line.set_color("black")
ax1.set_xticks(interval_scale*np.arange(len(robot_nums)))
ax1.set_xticklabels(robot_nums)
ax1.set_title("Success Rate")
ax1.legend()
ax2.set_xticks(interval_scale*np.arange(len(robot_nums)))
ax2.set_xticklabels([str(robot_num) for robot_num in eval_schedules["num_cooperative"]])
ax2.set_title("Time")
ax3.set_xticks(interval_scale*np.arange(len(robot_nums)))
ax3.set_xticklabels([str(robot_num) for robot_num in eval_schedules["num_cooperative"]])
ax3.set_title("Energy")
fig1.savefig(os.path.join(exp_dir,"success_rate.png"))
fig2.savefig(os.path.join(exp_dir,"time.png"))
fig3.savefig(os.path.join(exp_dir,"energy.png"))
if __name__ == "__main__":
seed = 3 # PRNG seed for all testing envs
##### adaptive IQN #####
test_env_0 = marinenav_env.MarineNavEnv2(seed)
save_dir = "pretrained_models/IQN/seed_9"
device = "cpu"
adaptive_IQN_agent = Agent(cooperative=True,device=device)
adaptive_IQN_agent.load_model(save_dir,"cooperative",device)
##### adaptive IQN #####
##### IQN #####
test_env_1 = marinenav_env.MarineNavEnv2(seed)
save_dir = "pretrained_models/IQN/seed_9"
device = "cpu"
IQN_agent = Agent(cooperative=True,device=device)
IQN_agent.load_model(save_dir,"cooperative",device)
##### IQN #####
##### DQN #####
test_env_2 = marinenav_env.MarineNavEnv2(seed)
save_dir = "pretrained_models/DQN/seed_9"
device = "cpu"
DQN_agent = Agent(cooperative=True,device=device,use_iqn=False)
DQN_agent.load_model(save_dir,"cooperative",device)
##### DQN #####
##### APF #####
test_env_3 = marinenav_env.MarineNavEnv2(seed)
APF_agent = APF.APF_agent(test_env_3.robots[0].a,test_env_3.robots[0].w)
##### APF #####
##### RVO #####
test_env_4 = marinenav_env.MarineNavEnv2(seed)
RVO_agent = RVO.RVO_agent(test_env_4.robots[0].a,test_env_4.robots[0].w,test_env_4.robots[0].max_speed)
##### RVO #####
eval_schedules = dict(num_episodes=[100,100,100,100,100],
num_cooperative=[3,4,5,6,7],
num_non_cooperative=[0,0,0,0,0],
num_cores=[4,5,6,7,8],
num_obstacles=[4,5,6,7,8],
min_start_goal_dis=[40.0,40.0,40.0,40.0,40.0]
)
run_experiment(eval_schedules)