-
Notifications
You must be signed in to change notification settings - Fork 1
/
trainer.sh
73 lines (61 loc) · 2.26 KB
/
trainer.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/bin/bash
# training settings
export num_train_epochs=3
export save_strategy="epoch"
export logging_strategy="epoch"
# validation settings
export evaluation_strategy="epoch"
# model settings
# export model_name="csebuetnlp/banglabert_large"
export model_name="outputs_final_3/checkpoint-7575"
# optimization settings
export learning_rate=2e-5
export warmup_ratio=0.1
export gradient_accumulation_steps=2
export weight_decay=0.01
export lr_scheduler_type="linear"
# misc. settings
export seed=1234
# input settings
# exactly one of `dataset_dir` or the (train / validation)
# dataset files need to be provided
input_settings=(
"--dataset_dir banglabert/token_classification/sample_inputs"
"--train_file sample_inputs/train.jsonl"
"--validation_file sample_inputs/validation.jsonl"
"--test_file sample_inputs/test.jsonl"
)
# output settings
export output_dir="outputs_final_3/"
# batch / sequence sizes
export PER_DEVICE_TRAIN_BATCH_SIZE=16
export PER_DEVICE_EVAL_BATCH_SIZE=16
export MAX_SEQUENCE_LENGTH=512
# optional arguments
optional_arguments=(
"--metric_for_best_model macro_avg_f1"
"--greater_is_better true" # this should be commented out if the reverse is required
"--load_best_model_at_end"
"--logging_first_step"
"--overwrite_cache"
"--cache_dir cache_dir/"
"--fp16"
"--fp16_backend auto"
)
# optional for logging
# export WANDB_PROJECT="Token_classification_finetuning"
# export WANDB_WATCH=false
# export WANDB_MODE="dryrun"
export WANDB_DISABLED=true
python banglabert/token_classification/token_classification.py \
--model_name_or_path $model_name \
--output_dir $output_dir \
--learning_rate=$learning_rate --warmup_ratio $warmup_ratio --gradient_accumulation_steps $gradient_accumulation_steps \
--weight_decay $weight_decay --lr_scheduler_type $lr_scheduler_type \
--per_device_train_batch_size=$PER_DEVICE_TRAIN_BATCH_SIZE --per_device_eval_batch_size=$PER_DEVICE_EVAL_BATCH_SIZE \
--max_seq_length $MAX_SEQUENCE_LENGTH --logging_strategy $logging_strategy \
--seed $seed --overwrite_output_dir \
--num_train_epochs=$num_train_epochs --save_strategy $save_strategy \
--evaluation_strategy $evaluation_strategy --do_predict\
$(echo -n ${input_settings[@]}) \
$(echo ${optional_arguments[@]})