forked from sauriii98/Computational-Models-of-Motor-Imagery
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Pre_processing.py
102 lines (77 loc) · 2.5 KB
/
Pre_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import numpy as np
import scipy.io
import pandas as pd
from scipy import fft
from scipy import signal
import matplotlib.pyplot as plt
import os
files = os.listdir('Datasets')
file_names = []
for f in files:
file_name = 'Datasets/'+f.split('.')[0]
if file_name not in file_names:
file_names.append(file_name)
def take_input(filepath):
mat = scipy.io.loadmat(filepath)
return mat
def get_markers(mat):
markers = mat['o'][0][0][4]
markers = np.reshape(markers, (markers.shape[0],))
return markers
def get_data(mat):
data = mat['o'][0][0][6]
data = np.delete(data, -1, axis=1)
return data
def get_trial_frames(data, markers, class_label):
frame = [data[i:i+170] for i in range(1, len(markers)) if markers[i] == class_label and markers[i-1] == 0]
frame = np.array(frame)
frame = np.transpose(frame,(0,2,1))
return frame
def design_filter(order, fs, cutoff_freq):
low_pass_filter = signal.butter(order, cutoff_freq, fs=fs, output='sos')
return low_pass_filter
def apply_filter(filter, frame, axis=-1):
return signal.sosfilt(filter, frame, axis=axis)
def fourier_trans(signal, axis=-1):
return fft.rfft(signal, axis=axis)
def remove_phase_shift(frames):
ref_phase = np.angle(frames[0], deg=True)
n_trials = frames.shape[0]
for i in range(1, n_trials):
p = np.angle(frames[i], deg=True)
phase_diff = np.abs(p - ref_phase)
phase_diff_exp = np.exp(-1 * phase_diff)
frames[i] *= phase_diff_exp
return frames
def extract_features(frames):
yf = frames
frame_len = 170
sampling_freq = 200
freq = fft.rfftfreq(frame_len, 1.0 / sampling_freq)
trials_features = []
for trial in yf:
features_per_channel = []
for channel in trial:
features_per_channel.extend(channel[freq < 5])
trials_features.append(features_per_channel)
trials_features = np.array(trials_features)
all_trials = []
for trial in trials_features:
features = []
for channel in trial:
r = channel.real
im = channel.imag
features.append(r)
if im:
features.append(im)
all_trials.append(features)
all_trials = np.array(all_trials)
return all_trials
def create_dataset(list_of_all_trials_per_class, list_of_class_labels):
list_of_datasets = []
for trials_set, class_label in zip(list_of_all_trials_per_class, list_of_class_labels):
class_set = pd.DataFrame(trials_set)
class_set['label'] = class_label
list_of_datasets.append(class_set)
dataset = pd.concat(list_of_datasets, ignore_index=True)
return dataset