-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdvanced quantitative methods Analysis script.m
329 lines (252 loc) · 13.4 KB
/
Advanced quantitative methods Analysis script.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
clc
clear all
%Place script file ps71089a_ap.m in the same directory as your repro_d... .mat files.
files = dir('repro*.mat');
% 1 = male 0 = female
% 1 = drug 0 = placebo
% 1 2 3 4 5 6 7 8 9 10 11
%Condition Gender Age Beta 400 600 800 1000 1200 1400 Mean_across
%intervals: 400, 600, 800, 1000, 1200, 1400
%Set up output
output = zeros(600, 11);
%Iterate over data files and fill matrix
for i = 1:length(files)
temp = load(files(i).name);
%% %Run a within-participant regression analyses in each condition,
%DV: RTs for each trial within a single participant;
%IV: stimulus intervals for each trial
beta = regress((temp.data.reproduction(:,2)),(temp.data.reproduction(:,1)));
%Get participants gender (output column 2)
if temp.data.gender(1) == 'm'
output(i, 2) = 1;
end
%Get participant Beta for initial regression, output column 4
output (i, 4) = beta;
%Get participant condition, output column 1
if temp.data.condition(1:7) == 'placebo'
output (i, 1) = 0;
else
output (i, 1) = 1;
end
%Get participant age, output column 3
output(i,3) = str2num(string(temp.data.age));
%Get participant mean RT for each condition and collapsed mean, output
%column 5:10
a1 = (temp.data.reproduction(:, 2));
i400 = (temp.data.reproduction(:,1)== 400);
i600 = (temp.data.reproduction(:,1)== 600);
i800 = (temp.data.reproduction(:,1)== 800);
i1000 = (temp.data.reproduction(:,1)== 1000);
i1200 = (temp.data.reproduction(:,1)== 1200);
i1400 = (temp.data.reproduction(:,1)== 1400);
output(i, 5) = mean(a1(i400));
output(i, 6) = mean(a1(i600));
output(i, 7) = mean(a1(i800));
output(i, 8) = mean(a1(i1000));
output(i, 9) = mean(a1(i1200));
output(i, 10) = mean(a1(i1400));
output(i, 11) = ((output(i, 5) + output(i, 6) + output(i, 7)+ output(i, 8) + output (i,9) + output(i,10)))/6;
end
%% Test 1
%runs a t-test to determine whether mean RTs in the
%placebo condition differ (collapsed across intervals) between genders
iplacebomale = (output(:,1) == 0) & (output(:,2) == 1);
iplacebofemale = (output(:,1) == 0) & (output(:,2) == 0);
PCMa = (output(:,11));
PCMmale = PCMa(iplacebomale);
PCMfemale = PCMa(iplacebofemale);
[h1, p1, ci1, stats1] = ttest2(PCMfemale,PCMmale);
%% Test 2
%runs a Pearson correlational analysis to determine whether mean RTs in the placebo condition
%(collapsed across intervals) correlate with age
age = output(:,3);
agev = output(:,3);
age_placebo = agev(output(:,1) == 0);
MRTPC = PCMa(output(:,1) == 0);
[rho,pval] = corr(MRTPC,age_placebo);
%% Test 3
%runs a t-test to determine whether mean RTs (collapsed across intervals) differ across conditions
Cond1RTi = output(:,1) == 1;
Cond2RTi = output(:,1) == 0;
Cond1M = (output(: , 11));
Cond2M = (output(: , 11));
RTCond1 = (Cond1M(Cond1RTi));
RTCond2 = (Cond2M(Cond2RTi));
[h2, p2, ci2, stats2]= ttest(RTCond1 , RTCond2);
%% Test 4
%runs a t-test to determine whether beta coefficients (see above) differ across conditions
Cond1BCi = output(:,1) == 0;
Cond2BCi = output(:,1) == 1;
BC = output(:,4);
Cond1BC = BC(Cond1BCi);
Cond2BC = BC(Cond2BCi);
[h3, p3, ci3, stats3] = ttest(Cond1BC , Cond2BC);
%Demographic information:
Age = output(:, 3);
%Condition one:
Age1i = output(:,1) == 0;
Age1v = Age(Age1i);
Mean_age1 = mean(Age1v);
std(Age1v);
%Condition two:
Age2i = output(:,1) == 1;
Age2v = Age(Age2i);
Mean_Age2 = mean(Age2v);
std(Age2v);
%Participants count in condition group:
tabulate(output(:,1)==1);
%Gender frequency:
tabulate(output(:,2)==1);
%% ttest 1 descriptive statistics:
%ttest1: mean RTs in the placebo condition differ (collapsed across intervals) between genders
%Mean/STD male placebo RT:
MMPRT = mean(PCMmale);
STD_M_PRT = std(PCMmale);
STDE_M_PRT = std( PCMmale ) / sqrt( length( PCMmale ));
%Mean/STD female placebo RT:
MFPRT = mean(PCMfemale);
STD_F_PRT = std(PCMfemale);
STDE_F_PRT = std( PCMfemale ) / sqrt( length( PCMfemale ));
%Standard error calculations:
M_RT_PC = PCMa(output(:,1) == 0);
STDE_M_T_PRT = std( M_RT_PC ) / sqrt( length( M_RT_PC ));
STDE_F_T_PRT = std( M_RT_PC ) / sqrt( length( M_RT_PC ));
%% Test 2 Correlation descriptive statistics:
%Pearson correlational analysis, mean RTs placebo condition, correlate with age
%Mean/STD placebo RT:
M_P_RT = mean(RTCond1);
STD_P_RT = std(RTCond1);
%Mean/STD placebo Age:
M_AGE_C1 = mean(Age1v);
STD_AGE_C1 = std(Age1v);
n_corr = (sum(length(Age1v),1) + length(RTCond1)) - 2;
%% Test 3 ttest 2 descriptive statistics:
%t-test to determine whether mean RTs (collapsed across intervals) differ across conditions
%Mean/STD RT Condition 1:
M_RT_C1 = mean(RTCond1);
STD_RT_C1 = std(RTCond1);
%Mean/STD RT Condition 2:
M_RT_C2 = mean(RTCond2);
STD_RT_C2 = std(RTCond2);
%Standard error calculations:
M_RT_PC = PCMa(output(:,1) == 0);
STDE_C1_RT = std( RTCond1 ) / sqrt( length( RTCond1 ));
STDE_C2_RT = std( RTCond2 ) / sqrt( length( RTCond2 ));
%% Test 4 ttest 3 descriptive statistics
%t-test to determine whether beta coefficients differ across conditions
%Mean/STD RT Condition 1:
M_B_C1 = mean(Cond1BC);
STD_B_C1 = std(Cond1BC);
%Mean/STD RT Condition 2:
M_B_C2 = mean(Cond2BC);
STD_B_C2 = std(Cond2BC);
STDE_C1_BC = std( Cond1BC ) / sqrt( length( Cond1BC ));
STDE_C2_BC = std( Cond2BC ) / sqrt( length( Cond2BC ));
%% Interval descriptives
%Condition index:
%Cond1index = output(:,1) == 0
%Cond2index = output(:,1) == 1
%Intervals:
i400m = (output(:, 5));
i600m = (output(:, 6));
i800m = (output(:, 7));
i1000m = (output(:, 8));
i1200m = (output(:, 9));
i1400m = (output(:,10));
%Values for interval mean:
%Condition one:
c1i400m = i400m(output(:,1)==0);
c1i600m = i600m(output(:,1)==0);
c1i800m = i800m(output(:,1)==0);
c1i1000m = i1000m(output(:,1)==0);
c1i1200m = i1200m(output(:,1)==0);
c1i1400m = i1400m(output(:,1)==0);
%Condition two:
c2i400m = i400m(output(:,1)==1);
c2i600m = i600m(output(:,1)==1);
c2i800m = i800m(output(:,1)==1);
c2i1000m = i1000m(output(:,1)==1);
c2i1200m = i1200m(output(:,1)==1);
c2i1400m = i1400m(output(:,1)==1);
%Standard errors:
%Condition one:
C1STDE_400 = std( c1i400m ) / sqrt( length( c1i400m ));
C1STDE_600 = std( c1i600m ) / sqrt( length( c1i600m ));
C1STDE_800 = std( c1i800m ) / sqrt( length( c1i800m ));
C1STDE_1000 = std( c1i1000m ) / sqrt( length( c1i1000m));
C1STDE_1200 = std( c1i1200m ) / sqrt( length( c1i1200m));
C1STDE_1400 = std( c1i1400m ) / sqrt( length( c1i1400m));
%Condition two:
C2STDE_400 = std( c2i400m ) / sqrt( length( c2i400m ));
C2STDE_600 = std( c2i600m ) / sqrt( length( c2i600m ));
C2STDE_800 = std( c2i800m ) / sqrt( length( c2i800m ));
C2STDE_1000 = std( c2i1000m ) / sqrt( length( c2i1000m));
C2STDE_1200 = std( c2i1200m ) / sqrt( length( c2i1200m));
C2STDE_1400 = std( c2i1400m ) / sqrt( length( c2i1400m));
%% Plots
%figure; errorbar(M_RT_PC, STDE_T_PRT)
%First plot
%errorbar(PCMmale,PCMfemale,M_RT_PC)
subplot(1,5,1)
title('T-test one');
hold on
bar([MMPRT MFPRT])
errorbar(1, MMPRT, STDE_M_T_PRT, '.')
errorbar(2, MFPRT, STDE_F_T_PRT, '.')
xlabel('Gender (Male = 1, Female = 2)')
ylabel('Mean placebo RT')
hold off
%Second plot
subplot(1,5,2)
%PCMa,age correlation
scatter(age, PCMa)
title('Age placebo mean RT correlation');
xlabel('Placebo condition age')
ylabel('Placebo condition mean RT')
%Third plot : t-test to determine whether mean RTs (collapsed across intervals) differ across conditions
subplot(1,5,3)
title('T-test two');
hold on
bar([M_RT_C1 M_RT_C2])
%errorbar(1, MMPRT, STDE_C1_RT, 'marker', '.')
errorbar(1, M_RT_C1, STDE_C1_RT, 'marker', '.')
errorbar(2, M_RT_C2, STDE_C2_RT, 'marker', '.')
xlabel('Condition (Placebo = 1, Panortaxin = 2)')
ylabel('Mean RT collapsed over intervals')
hold off
%Fourth plot: an error bar plot with means and standard errors for each stimulus interval in each condition,
subplot(1,5,4)
title('Mean interval RT by condition');
hold on
br = bar([mean(c1i400m) mean(c1i600m) mean(c1i800m) mean(c1i1000m) mean(c1i1200m) mean(c1i1400m) mean(c2i400m) mean(c2i600m) mean(c2i800m) mean(c2i1000m) mean(c2i1200m) mean(c2i1400m)]);
xlabel('Intervals(1:5 placebo, 6:10 Panortaxin) ')
ylabel('Mean RT')
%Condition one intervals error bars
errorbar(1, mean(c1i400m), C1STDE_400, '.')
errorbar(2, mean(c1i600m), C1STDE_600, '.')
errorbar(3, mean(c1i800m), C1STDE_800, '.')
errorbar(4, mean(c1i1000m), C1STDE_1000, '.')
errorbar(5, mean(c1i1200m), C1STDE_1200, '.')
errorbar(6, mean(c1i1400m), C1STDE_1400, '.')
%Condition two intervals error bars
errorbar(7, mean(c2i400m), C2STDE_400, '.')
errorbar(8, mean(c2i600m), C2STDE_600, '.')
errorbar(9, mean(c2i800m), C2STDE_800, '.')
errorbar(10, mean(c2i1000m), C2STDE_1000, '.')
errorbar(11, mean(c2i1200m), C2STDE_1200, '.')
errorbar(12, mean(c2i1400m), C2STDE_1400, '.')
hold off
%Fifth plot: t-test results to determine whether beta coefficients differ across conditions
subplot(1,5,5)
hold on
title('T-test three');
bar([M_RT_C1 M_RT_C2])
errorbar(1, M_RT_C1, STDE_C1_BC,'.')
errorbar(2, M_RT_C2, STDE_C2_BC,'.')
xlabel('Condition (Placebo = 1, Panortaxin = 2)')
ylabel('Beta coefficients')
hold off
data.description =( ['Test one:' newline 'The mean of the placebo group male reproduction times is ', num2str(MMPRT) newline 'The standard deviation of the placebo group male reproduction times is ',num2str(STD_M_PRT) newline 'The mean of the placebo group female reproduction times is ',num2str(MFPRT) newline 'The standard deviation of the placebo group female reproduction times is ',num2str(STD_F_PRT) newline newline 'Independent samples T test: t(', num2str(stats1.df) ') =' , num2str(stats1.tstat),', p=' num2str(p1) newline newline 'Test two:' newline 'The mean of the placebo group reproduction times is ',num2str(M_P_RT) newline 'The standard deviation of the placebo group reproduction times is ', num2str(STD_P_RT) newline 'The mean of the placebo group age is ', num2str(M_AGE_C1) newline 'The standard deviation of the placebo group age is ', num2str(STD_AGE_C1) newline newline 'Pearsons correlation, mean RT placebo condition and age, r =' num2str(rho) ' , n =' num2str(n_corr) ', p =' num2str(pval) newline newline 'Test three:' newline 'The mean of the mean collapsed across intervals placebo reproduction time is ', num2str(M_RT_C1) newline 'The mean of the standard deviation of the collapsed across intervals placebo reproduction time is ', num2str(STD_RT_C1) newline 'The mean of the mean collapsed across intervals drug condition reproduction time is ', num2str(M_RT_C2) newline 'The mean of the standard deviation of the collapsed across intervals drug condition reproduction time is ', num2str(STD_RT_C2) newline newline 'Paired samples T test, mean RT (collapsed over intervals) and condition: t(', num2str(stats2.df) ') =' , num2str(stats2.tstat),', p=' num2str(p2) newline newline 'Test four:' newline 'The mean of the beta coefficients from the placebo condition is ', num2str(M_B_C1) newline 'The standard deviation of the beta coefficients from the placebo condition is ', num2str(STD_B_C1) newline 'The mean of the beta coefficients from the drug condition is ', num2str(M_B_C2) newline 'The standard deviation of the beta coefficients from the drug condition is' , num2str(STD_B_C2) newline newline 'Paired samples T test, beta coefficients and condition: t(', num2str(stats3.df) ') =' , num2str(stats3.tstat),', p=' num2str(p3) newline ]);
h = data.description
%uncomment to view output matrix
%output