-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
148 lines (120 loc) · 6.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
from argparse import ArgumentParser
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from torch.utils.data import DataLoader
from wsd.data.dataset import WordSenseDisambiguationDataset
from wsd.data.processor import Processor
from wsd.models.model import SimpleModel
if __name__ == '__main__':
parser = ArgumentParser()
# Add trial name.
parser.add_argument('--name', type=str, required=True)
# Add seed arg.
parser.add_argument('--seed', type=int, default=2021)
# Add data args.
parser.add_argument('--train_path', type=str,
default='data/preprocessed/glosses/semcor.glosses.untagged.json')
parser.add_argument('--dev_path', type=str,
default='data/preprocessed/semeval2007/semeval2007.json')
# Data processing
parser.add_argument('--include_hypernyms',
default=True, action='store_true')
parser.add_argument('--include_hyponyms',
default=True, action='store_true')
parser.add_argument('--include_similar', default=True, action='store_true')
parser.add_argument('--include_related', default=True, action='store_true')
parser.add_argument('--include_also_see',
default=True, action='store_true')
parser.add_argument('--include_verb_groups',
default=True, action='store_true')
parser.add_argument('--include_instance_hypernyms', action='store_true')
parser.add_argument('--include_instance_hyponyms', action='store_true')
parser.add_argument('--include_pertainyms', action='store_true')
parser.add_argument('--include_syntag', action='store_true')
parser.add_argument('--include_pagerank',
default=True, action='store_true')
parser.add_argument('--pagerank_k', type=int, default=10)
parser.add_argument('--offline_pagerank_path', type=str, default=None)
# Add dataloader args.
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--shuffle', action='store_true', default=True)
parser.add_argument('--num_workers', type=int, default=4)
# Add syntag & related edges in a graph of its own
parser.add_argument('--use_syntag_related_graph',
default=False, action='store_true')
# Add checkpoint args.
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints')
# Add resume from checkpoint path
parser.add_argument('--resume_from', type=str, default=None)
# Add model-specific args.
parser = SimpleModel.add_model_specific_args(parser)
# Add all the available trainer options to argparse.
parser = Trainer.add_argparse_args(parser)
parser.set_defaults(
min_epochs=1,
max_epochs=30,
gpus=1,
precision=16,
gradient_clip_val=5.0,
row_log_interval=128,
deterministic=True
)
# Store the arguments in hparams.
hparams = parser.parse_args()
print(hparams)
seed_everything(hparams.seed)
train_dataset = WordSenseDisambiguationDataset(hparams.train_path)
dev_dataset = WordSenseDisambiguationDataset(hparams.dev_path)
processor = Processor(
language_model=hparams.language_model,
loss_type=hparams.loss_type,
num_negative_samples=hparams.num_negative_samples,
include_similar_synsets=hparams.include_similar,
include_related_synsets=hparams.include_related,
include_verb_group_synsets=hparams.include_verb_groups,
include_hypernym_synsets=hparams.include_hypernyms,
include_hyponym_synsets=hparams.include_hyponyms,
include_syntags=hparams.include_syntag,
include_instance_hypernyms_synsets=hparams.include_instance_hypernyms,
include_instance_hyponyms_synsets=hparams.include_instance_hyponyms,
include_also_see_synsets=hparams.include_also_see,
include_pertainyms_synsets=hparams.include_pertainyms,
include_pagerank_synsets=hparams.include_pagerank,
pagerank_k=hparams.pagerank_k,
use_synder=hparams.use_syntag_related_graph,
offline_pagerank_path=hparams.offline_pagerank_path)
synset_embeddings = None if not hparams.use_synset_embeddings else processor.load_synset_embeddings(
hparams.synset_embeddings_path)
train_dataloader = DataLoader(train_dataset, batch_size=hparams.batch_size,
shuffle=hparams.shuffle,
num_workers=hparams.num_workers,
collate_fn=processor.collate_sentences)
dev_dataloader = DataLoader(dev_dataset,
batch_size=hparams.batch_size,
num_workers=hparams.num_workers,
collate_fn=processor.collate_sentences)
# Additional hparams.
hparams.steps_per_epoch = int(
len(train_dataset) / (hparams.batch_size * hparams.accumulate_grad_batches)) + 1
hparams.num_synsets = processor.num_synsets
model = SimpleModel(hparams,
synset_embeddings=synset_embeddings,
padding_token_id=processor.padding_token_id)
model_dir = os.path.join(hparams.checkpoint_dir, hparams.name)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
processor_config_path = os.path.join(model_dir, 'processor_config.json')
model_checkpoint_path = os.path.join(model_dir,
'checkpoint_{val_f1:0.4f}_{epoch:03d}')
processor.save_config(processor_config_path)
checkpoint_callback = ModelCheckpoint(filepath=model_checkpoint_path,
monitor='val_f1', mode='max',
save_top_k=2, verbose=True)
early_stopping_callback = EarlyStopping(monitor='val_f1', patience=5,
verbose=True, mode='max') if hparams.thaw_embeddings_after is None else None
trainer = Trainer.from_argparse_args(hparams,
checkpoint_callback=checkpoint_callback,
early_stop_callback=early_stopping_callback)
trainer.fit(model, train_dataloader=train_dataloader,
val_dataloaders=dev_dataloader)