-
Notifications
You must be signed in to change notification settings - Fork 0
/
lpq.m
176 lines (146 loc) · 5.69 KB
/
lpq.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
function LPQdesc = lpq(img,winSize,decorr,freqestim,mode)
% Defaul parameters
% Local window size
if nargin<2 || isempty(winSize)
winSize=3; % default window size 3
end
% Decorrelation
if nargin<3 || isempty(decorr)
decorr=1; % use decorrelation by default
end
rho=0.90; % Use correlation coefficient rho=0.9 as default
% Local frequency estimation (Frequency points used [alpha,0], [0,alpha], [alpha,alpha], and [alpha,-alpha])
if nargin<4 || isempty(freqestim)
freqestim=1; %use Short-Term Fourier Transform (STFT) with uniform window by default
end
STFTalpha=1/winSize; % alpha in STFT approaches (for Gaussian derivative alpha=1)
sigmaS=(winSize-1)/4; % Sigma for STFT Gaussian window (applied if freqestim==2)
sigmaA=8/(winSize-1); % Sigma for Gaussian derivative quadrature filters (applied if freqestim==3)
% Output mode
if nargin<5 || isempty(mode)
mode='nh'; % return normalized histogram as default
end
% Other
convmode='valid'; % Compute descriptor responses only on part that have full neigborhood. Use 'same' if all pixels are included (extrapolates image with zeros)
%% Check inputs
if size(img,3)~=1
error('Only gray scale image can be used as input');
end
if winSize<3 || rem(winSize,2)~=1
error('Window size winSize must be odd number and greater than equal to 3');
end
if sum(decorr==[0 1])==0
error('decorr parameter must be set to 0->no decorrelation or 1->decorrelation. See help for details.');
end
if sum(freqestim==[1 2 3])==0
error('freqestim parameter must be 1, 2, or 3. See help for details.');
end
if sum(strcmp(mode,{'nh','h','im'}))==0
error('mode must be nh, h, or im. See help for details.');
end
%% Initialize
img=double(img); % Convert image to double
r=(winSize-1)/2; % Get radius from window size
x=-r:r; % Form spatial coordinates in window
u=1:r; % Form coordinates of positive half of the Frequency domain (Needed for Gaussian derivative)
%% Form 1-D filters
if freqestim==1 % STFT uniform window
% Basic STFT filters
w0=(x*0+1);
w1=exp(complex(0,-2*pi*x*STFTalpha));
w2=conj(w1);
elseif freqestim==2 % STFT Gaussian window (equals to Gaussian quadrature filter pair)
% Basic STFT filters
w0=(x*0+1);
w1=exp(complex(0,-2*pi*x*STFTalpha));
w2=conj(w1);
% Gaussian window
gs=exp(-0.5*(x./sigmaS).^2)./(sqrt(2*pi).*sigmaS);
% Windowed filters
w0=gs.*w0;
w1=gs.*w1;
w2=gs.*w2;
% Normalize to zero mean
w1=w1-mean(w1);
w2=w2-mean(w2);
elseif freqestim==3 % Gaussian derivative quadrature filter pair
% Frequency domain definition of filters
G0=exp(-x.^2*(sqrt(2)*sigmaA)^2);
G1=[zeros(1,length(u)),0,u.*exp(-u.^2*sigmaA^2)];
% Normalize to avoid small numerical values (do not change the phase response we use)
G0=G0/max(abs(G0));
G1=G1/max(abs(G1));
% Compute spatial domain correspondences of the filters
w0=real(fftshift(ifft(ifftshift(G0))));
w1=fftshift(ifft(ifftshift(G1)));
w2=conj(w1);
% Normalize to avoid small numerical values (do not change the phase response we use)
w0=w0/max(abs([real(max(w0)),imag(max(w0))]));
w1=w1/max(abs([real(max(w1)),imag(max(w1))]));
w2=w2/max(abs([real(max(w2)),imag(max(w2))]));
end
%% Run filters to compute the frequency response in the four points. Store real and imaginary parts separately
% Run first filter
filterResp=conv2(conv2(img,w0.',convmode),w1,convmode);
% Initilize frequency domain matrix for four frequency coordinates (real and imaginary parts for each frequency).
freqResp=zeros(size(filterResp,1),size(filterResp,2),8);
% Store filter outputs
freqResp(:,:,1)=real(filterResp);
freqResp(:,:,2)=imag(filterResp);
% Repeat the procedure for other frequencies
filterResp=conv2(conv2(img,w1.',convmode),w0,convmode);
freqResp(:,:,3)=real(filterResp);
freqResp(:,:,4)=imag(filterResp);
filterResp=conv2(conv2(img,w1.',convmode),w1,convmode);
freqResp(:,:,5)=real(filterResp);
freqResp(:,:,6)=imag(filterResp);
filterResp=conv2(conv2(img,w1.',convmode),w2,convmode);
freqResp(:,:,7)=real(filterResp);
freqResp(:,:,8)=imag(filterResp);
% Read the size of frequency matrix
[freqRow,freqCol,freqNum]=size(freqResp);
%% If decorrelation is used, compute covariance matrix and corresponding whitening transform
if decorr == 1
% Compute covariance matrix (covariance between pixel positions x_i and x_j is rho^||x_i-x_j||)
[xp,yp]=meshgrid(1:winSize,1:winSize);
pp=[xp(:) yp(:)];
dd=dist(pp,pp');
C=rho.^dd;
% Form 2-D filters q1, q2, q3, q4 and corresponding 2-D matrix operator M (separating real and imaginary parts)
q1=w0.'*w1;
q2=w1.'*w0;
q3=w1.'*w1;
q4=w1.'*w2;
u1=real(q1); u2=imag(q1);
u3=real(q2); u4=imag(q2);
u5=real(q3); u6=imag(q3);
u7=real(q4); u8=imag(q4);
M=[u1(:)';u2(:)';u3(:)';u4(:)';u5(:)';u6(:)';u7(:)';u8(:)'];
% Compute whitening transformation matrix V
D=M*C*M';
A=diag([1.000007 1.000006 1.000005 1.000004 1.000003 1.000002 1.000001 1]); % Use "random" (almost unit) diagonal matrix to avoid multiple eigenvalues.
[U,S,V]=svd(A*D*A);
% Reshape frequency response
freqResp=reshape(freqResp,[freqRow*freqCol,freqNum]);
% Perform whitening transform
freqResp=(V.'*freqResp.').';
% Undo reshape
freqResp=reshape(freqResp,[freqRow,freqCol,freqNum]);
end
%% Perform quantization and compute LPQ codewords
LPQdesc=zeros(freqRow,freqCol); % Initialize LPQ code word image (size depends whether valid or same area is used)
for i=1:freqNum
LPQdesc=LPQdesc+(double(freqResp(:,:,i))>0)*(2^(i-1));
end
%% Switch format to uint8 if LPQ code image is required as output
if strcmp(mode,'im')
LPQdesc=uint8(LPQdesc);
end
%% Histogram if needed
if strcmp(mode,'nh') || strcmp(mode,'h')
LPQdesc=hist(LPQdesc(:),0:255);
end
%% Normalize histogram if needed
if strcmp(mode,'nh')
LPQdesc=LPQdesc/sum(LPQdesc);
end