-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhighligh_finder.py
113 lines (83 loc) · 3.6 KB
/
highligh_finder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.animation as animation
def cross_entropy(a):
return a.cumsum()
def get_hl(name):
print(name)
namel = 'data/{}_exported/acc_LH'.format(name)
namer = 'data/{}_exported/acc_RH'.format(name)
def side(name_s):
acc_LH = pd.read_pickle(name_s)
acc_fps_begin = 1865 + 10 * 50
acc_fps_end = 1865 + 83 * 50
def get_time(t):
return (t - 1865) / 50
fps = 50
scan_size = 2 * fps
acc_abs_max = set()
for i in range(acc_fps_begin, acc_fps_end - scan_size, scan_size // 2):
data = acc_LH[i:i + scan_size]
s = np.sqrt(data['AP'] ** 2 + data['DP'] ** 2 + data['UR'] ** 2)
result = (s.max(), s.min(), i + np.argmax(s), i + np.argmin(s))
acc_abs_max.add(result)
acc_abs_max_list = list(acc_abs_max)
acc_abs_max_list = sorted(acc_abs_max_list, key=lambda e: -abs(e[0] - e[1]))
for i in range(6):
# print(acc_abs_max_list[i])
print("{:.3}--{:.3}".format(get_time(acc_abs_max_list[i][2]), get_time(acc_abs_max_list[i][3])))
side(namel)
side(namer)
print("------------------------------------------")
def get_highlight_graph(left_hand, right_hand):
fps = 30
acc_fps = 50
acc_fps_begin = 1865
acc_lh = pd.read_pickle(left_hand) # 'data/vertical_exported/acc_LH')
acc_rh = pd.read_pickle(right_hand)
endFrame = acc_fps_begin + 90 * fps
save_count = endFrame - acc_fps_begin
def getFrameCount():
for i in range(int(acc_fps_begin / acc_fps * fps), int(acc_lh.shape[0] / acc_fps * fps)):
yield i
def init():
ax.set_ylim(0, 5)
ax.set_xlim(0, 1)
del xdata[:]
del ydata[:]
line.set_data(xdata, ydata)
return line,
fig, ax = plt.subplots()
line, = ax.plot([], [], lw=2)
ax.grid()
xdata, ydata = [], []
def run(frameCount):
second = frameCount / fps
accframeCount = int(second * acc_fps)
# update the data
print(second - acc_fps_begin / acc_fps)
# here we gen the data
lap = acc_lh[max(accframeCount - acc_fps, 0):accframeCount]['AP']
lur = acc_lh[max(accframeCount - acc_fps, 0):accframeCount]['UR']
ldp = acc_lh[max(accframeCount - acc_fps, 0):accframeCount]['DP']
rap = acc_rh[max(accframeCount - acc_fps, 0):accframeCount]['AP']
rur = acc_rh[max(accframeCount - acc_fps, 0):accframeCount]['UR']
rdp = acc_rh[max(accframeCount - acc_fps, 0):accframeCount]['DP']
l = np.sqrt(lap ** 2 + lur ** 2 + ldp ** 2)
r = np.sqrt(rap ** 2 + rur ** 2 + rdp ** 2)
ydata = np.array(l + r)
# gen data end
xdata = np.linspace(0, 1, acc_fps)[0:len(ydata)]
line.set_data(xdata, ydata)
return line,
ani = animation.FuncAnimation(fig, run, getFrameCount, interval=1000 / fps, init_func=init, save_count=save_count)
#plt.show()
ani.save(left_hand.replace('/', '_') + '_' + 'highlight' + '.mp4', writer='ffmpeg', fps=fps, dpi=300)
def get_height_graph(height_path):
height = pd.read_pickle(height_path)
height.plot(label='height')
# for f in [('data/overhang_exported/acc_LH','data/overhang_exported/acc_RH'), ('data/traverse_exported/acc_LH','data/traverse_exported/acc_RH'), ('data/traverse_exported/acc_LH','data/traverse_exported/acc_RH')]:
# for f in [('data/vertical_exported/acc_LH','data/vertical_exported/acc_RH')]:
# get_highlight_graph(f[0],f[1])
get_height_graph('data/vertical_exported/climbs_0_height_profile')