-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_pretrain.py
206 lines (168 loc) · 8.84 KB
/
main_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import argparse
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path
import wandb
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import timm
from copy import deepcopy
# assert timm.__version__ == "0.3.2" # version check
import timm.optim.optim_factory as optim_factory
import utils.misc as misc
from utils.misc import NativeScalerWithGradNormCount as NativeScaler
import adaptive_tokenizers
from engines.latent_distillation_pretrain import train_one_epoch
def get_args_parser():
parser = argparse.ArgumentParser('ALIT Training', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=400, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', help='epochs to warmup LR')
parser.add_argument('--model', default='alit_small', type=str, metavar='MODEL', help='Name of model to train')
parser.add_argument('--input_size', default=256, type=int, help='images input size')
parser.add_argument('--grad_clip', type=float, default=3.0, help='Gradient clip')
# ALIT arguments
parser.add_argument('--base_tokenizer', default="vqgan", type=str, help='Base 2D Tokenizer. Current options: VQGAN | VAE')
parser.add_argument('--quantize_latent', action='store_true', help='Quantization of 1D latent tokens (before passing to decoder)')
parser.add_argument('--factorize_latent', action='store_true', help='Factorization of 1D latent tokens (before passing to decoder)')
parser.set_defaults(pin_mem=False)
# Dataset parameters
parser.add_argument('--data_path', default=None, type=str, help='dataset path')
parser.add_argument('--output_dir', default='./output_dir', help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir', help='path where to tensorboard log')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# Distributed training parameters
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# simple augmentation
transform_train = transforms.Compose([
# transforms.CenterCrop(args.input_size),
# transforms.RandomResizedCrop(args.input_size, scale=(0.2, 1.0)),
transforms.RandomResizedCrop(args.input_size, scale=(0.8, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
dataset_train = datasets.ImageFolder(os.path.join(args.data_path, 'train'), transform=transform_train)
if True: # args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True, # persistent_workers=True,
)
base_tokenizer_args = {
"id": args.base_tokenizer,
"is_requires_grad": False
}
model = adaptive_tokenizers.__dict__[args.model](
base_tokenizer_args=base_tokenizer_args,
quantize_latent=args.quantize_latent, factorize_latent=args.factorize_latent,
train_stage="latent_distillation_pretrain")
model.to(device)
print(sum(p.numel() for p in model.parameters()), "num params")
model_without_ddp = model
ema = deepcopy(model_without_ddp).to(device)
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
loss_scaler = NativeScaler()
# misc.load_model(args=args, model_without_ddp=model_without_ddp, ema=ema)
misc.resume_model(args=args, model_without_ddp=model_without_ddp, ema=ema, optimizer=optimizer, loss_scaler=loss_scaler)
if global_rank==0:
wandb.init(project="visual-representation-learning", group="imagenet100", name="release_testing", config=args)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, ema, data_loader_train,
optimizer, device, epoch, loss_scaler,
log_writer=log_writer,
args=args
)
if args.output_dir and (epoch % 40 == 0 or epoch + 1 == args.epochs):
misc.save_model(
args=args, model_without_ddp=model_without_ddp, ema=ema, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
misc.save_model_last(
args=args, model_without_ddp=model_without_ddp, ema=ema, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,}
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
torch.cuda.empty_cache()
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
args.log_dir = args.output_dir
main(args)