-
Notifications
You must be signed in to change notification settings - Fork 5
/
UI_keliye.py
76 lines (59 loc) · 2.25 KB
/
UI_keliye.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from tensorflow.keras.models import load_model
import numpy as np
import pickle
data=[]
prev_sch=None
bus_limit=200
static_model=load_model("model24hrspredict.h5")
dynamic_model=load_model("model2hrspredict(6hrsinput).h5")
static_scaler=pickle.load(open("scalernew.pkl",'rb'))
dynamic_scaler=pickle.load(open("scaler6hrswala.pkl",'rb'))
def schedule(prediction):
sch=[]
for i,j in enumerate(prediction):
print(f"{int(round(j[0]/bus_limit))} AT {str(i).zfill(2)}:00")
sch.append([int(round(j[0]/bus_limit)),i])
return sch
def special_events(prediction):
start=prediction['START']
stop=prediction['STOP']
magnitude=prediction['MAGNITUDE']
prediction['TIMESERIES'][start:stop]=prediction['TIMESERIES'][start:stop]*(1.0+magnitude/100)
return prediction
def static_time_table(data,special_timeseries=None):
y_pred=static_model.predict(data)[0]
if special_timeseries!=None:
special_timeseries['TIMESERIES']=y_pred[0]
y_pred=special_events(special_timeseries)['TIMESERIES']
y_pred=static_scaler.inverse_transform(y_pred.reshape(-1,1))
number=schedule(y_pred)
return [number,y_pred]
def normalizer(lenght,mu,sigma,max_val=20):
"Using standard distribution to increase the value in HSV"
temp=np.arange(0,lenght)
temp=np.exp( - (temp - mu)**2 / (2 * sigma**2) )/(sigma * np.sqrt(2 * np.pi))
slope=max_val/(max(temp)-min(temp))
intercept=max_val-(max(temp)*max_val/(max(temp)-min(temp)))
temp=temp*slope+intercept
return temp
def dynamic_changes(data,sch,start_time):
pred=dynamic_model.predict(data)[0]
pred=schedule(dynamic_scaler.inverse_transform(pred.reshape(-1,1)))
#temp=sch[start_time:start_time+2]
sch[start_time:start_time+2]=list(map(lambda x:x[0],pred))
return sch
def get_static_timetable():
global data,prev_sch
norm=normalizer(24,12,8,0.6)
rand=np.random.random_sample(24)/5
norm+=rand
data+=list(norm)
sch,pred=static_time_table(np.asarray(data[-24:]).reshape(1,-1,1))
prev_sch=sch
return sch
def get_dynamic_timetable(start_time,prev_sch):
sch=dynamic_changes(
np.asarray(data[-24-6+start_time:-24+start_time]).reshape(1,-1,1),
list(map(lambda x:x[0],prev_sch)),
start_time)
return sch