forked from varnivey/ipanda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPAS_calc.py
432 lines (296 loc) · 12.6 KB
/
PAS_calc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# -*- coding: utf-8 -*-
### This file is a part of iPANDA package
### (in silico Pathway Activation Network Decomposition Analysis)
### The package is distributed under iPANDA license
### Version 0.0.1
###
### Copyright © 2016 Insilico Medicine Inc.
###
### USA, Johns Hopkins University, ETC B301,
### 1101 East 33rd St. Baltimore, MD 21218
import warnings
warnings.simplefilter('ignore')
import os,sys
import pathway_parser as pp
import numpy as np
from scipy.stats import ttest_1samp as ttest_func2
from scipy.stats import ttest_ind as ttest_func
class PAS_calculation:
'''Class represents methods for PAS calculation on a set of pathways'''
def __init__(self,pathway_file,pathway_contents):
'''Initialize data and pathways for calculation'''
self.alg_dict = {\
'oncofinder_like':self.oncofinder_like_PAS,\
}
try:
names_list = list(np.loadtxt(pathway_file,usecols = (0,),dtype=np.str))
except:
names_list = [str(np.loadtxt(pathway_file,usecols = (0,),dtype=np.str))]
pathway_list = []
contents_dict = self.get_pw_vals_dict(pathway_contents)
for name in names_list:
pathway_list.append(pp.pathway(contents_dict[name],name))
self.pathway_list = pathway_list
def get_pw_vals_dict(self, pathway_vals):
'''Read pathway contents file to a dictionary'''
with open(pathway_vals,'r') as r_file:
line1 = r_file.readline()
line1 = line1.replace('\n','')
line1 = line1.replace('\r','')
pathway_names = line1.split('\t')
all_vals = np.loadtxt(pathway_vals,skiprows=1,unpack=True,\
dtype=np.str,delimiter='\t')
pw_val_dict = {}
if len(pathway_names) >= 1:
for i,pw in enumerate(pathway_names):
pw_val_dict[pw] = list(all_vals[i])
else:
for pw in pathway_names:
pw_val_dict[pw] = list(all_vals)
return pw_val_dict
def write_PAS_to_file(self, data, output_file, \
algorithm='oncofinder_like', args={}):
'''Write PASes for given algorithm'''
alg_call = self.alg_dict[algorithm]
PAS_vals = alg_call(data,**args)
pw_list = [pw.name for pw in self.pathway_list]
self.write_pw_values_file(pw_list, data.t_measures,PAS_vals,output_file)
def write_pw_values_file(self, pw_list, measures, vals, outfile):
'''Write annotated table with values, sample names and pathway names'''
if vals.ndim == 1:
vals = vals.reshape((1,-1))
with open(outfile,'w') as o_file:
o_file.write('\"'+'\" \"'.join(measures)+'\"\n')
for i in range(len(pw_list)):
o_file.write('\"' + pw_list[i] + '\" ')
vals_text = [str(val) for val in vals[i]]
o_file.write(' '.join(vals_text) + '\n')
def oncofinder_like_PAS(self,data,ARR_alg,ARR_alg_args,\
normalize=False):
'''Calculate oncofinder like PASes'''
pathway_list = self.pathway_list
genes,CNRs = data.genes, data.CNRs
PAS_vals = []
for pathway in pathway_list:
# print pathway.name
# pathway.clean_gene_vect(gene_list_file)
ARRs = pathway.get_ARRs(ARR_alg,ARR_alg_args)
ARRs = np.array(ARRs)
gene_vect = pathway.gene_vect
cur_CNRs = []
for gene in gene_vect:
if genes.count(gene) != 0:
cur_CNRs.append(CNRs[:,genes.index(gene)])
else:
cur_CNRs.append(np.zeros((CNRs.shape[0]),dtype=np.float))
cur_CNRs = np.array(cur_CNRs)
# print len(ARRs)
# print cur_CNRs.shape
if normalize:
ARRs_neg = ARRs[ARRs < 0]
ARRs_pos = ARRs[ARRs > 0]
ARRs_sum = max(np.sum(np.abs(ARRs_neg)),np.sum(ARRs_pos))
if ARRs_sum != 0:
ARRs = 1000*ARRs/ARRs_sum
PAS_vals.append(np.dot(cur_CNRs.T,ARRs))
return np.array(PAS_vals)
class expr_data():
'''Class for managing expression datasets'''
def __init__(self):
'''Constructor'''
pass
def calculate_CNRs_from_expr_file(self,expr_file,delimiter = '\t',
type_line = False, perform_t_test = False, remove_quotes=False):
'''Calculate CNRs using expression raw data'''
with open(expr_file,'rU') as e_file:
line1 = e_file.readline()
line1 = line1.replace('\n','')
line1 = line1.replace('\r','')
measures = line1.split(delimiter)[1:]
if remove_quotes:
measures = [measure.replace('\"','') for measure in measures]
ncols = len(measures)
skiprows = 1
line2 = e_file.readline()
line2 = line2.replace('\"','')
type_line = line2.startswith('Type')
if type_line:
line2 = line2.replace('\n','')
line2 = line2.replace('\r','')
m_types = line2.split(delimiter)[1:]
skiprows = 2
t_line = e_file.readline()
t_line = t_line.replace('\"','')
else:
t_line = line2
if t_line.split(delimiter)[0] == '1':
sc = 1
else:
sc = 0
expr_full = np.loadtxt(expr_file,skiprows=skiprows, unpack=True,\
usecols = tuple(np.arange(sc+1,sc+ncols+1)),delimiter=delimiter,
dtype=np.str)
expr_full[expr_full == 'NA'] = '0.'
expr_full = expr_full.astype(np.float)
genes = list(np.loadtxt(expr_file,skiprows=skiprows,usecols=(sc,),\
dtype=np.str, delimiter=delimiter))
if remove_quotes:
genes = [gene.replace('\"','') for gene in genes]
if type_line:
n_measures_inds = [measures.index(m) for m in measures \
if m_types[measures.index(m)].startswith('normal')]
t_measures_inds = [measures.index(m) for m in measures \
if not m_types[measures.index(m)].startswith('normal')]
t_measures = [m for m in measures \
if not m_types[measures.index(m)].startswith('normal')]
n_measures = [m for m in measures \
if m_types[measures.index(m)].startswith('normal')]
else:
n_measures_inds = [measures.index(m) for m in measures \
if m.startswith('Normal')]
t_measures_inds = [measures.index(m) for m in measures \
if not m.startswith('Normal')]
t_measures = [m for m in measures if not m.startswith('Normal')]
n_measures = [m for m in measures if m.startswith('Normal')]
# expr_full_log = np.log(expr_full)/np.log(10)
genes = np.array(genes)
bad_expr = expr_full <= 0
good_inds = np.logical_not(bad_expr.sum(0))
expr_full = expr_full[:,good_inds]
genes = list(genes[good_inds])
expr_full_log = np.log(expr_full)
expr_n = expr_full_log[n_measures_inds]
n_mean = np.mean(expr_n,0)
expr_t = expr_full_log[t_measures_inds]
CNRs = expr_t - n_mean
self.expr_t = expr_t
self.expr_n = expr_n
self.genes = genes
self.CNRs = CNRs
self.t_measures = t_measures
self.n_measures = n_measures
def calc_CNRs_for_modules(self, modules_file,mod_cnr='mean'):
'''Calculate CNRs for modules'''
genes = self.genes
CNRs = self.CNRs
modules = []
with open(modules_file,'r') as m_file:
for line in m_file:
line = line.replace('\n','')
modules.append(line.split())
new_CNRs = np.empty((CNRs.shape[0],len(modules)))
for i,module in enumerate(modules):
lines = []
for gene in module:
if genes.count(gene) > 0:
lines.append(CNRs[:,genes.index(gene)])
if len(lines) != 0:
if mod_cnr == 'mean':
new_CNRs[:,i] = np.mean(lines,0)
elif mod_cnr == 'sum':
new_CNRs[:,i] = np.sum(lines,0)
else:
new_CNRs[:,i] = 0.
module_names = [('mod' + str(x).zfill(4)) for x in range(len(modules))]
genes = genes + module_names
self.genes = genes
self.CNRs = np.hstack((CNRs,new_CNRs))
def take_genes_from_list_only(self,gene_list_file):
'''Remove all genes except those from file given'''
genes = self.genes
expr_t = self.expr_t
expr_n = self.expr_n
CNRs = self.CNRs
if type(gene_list_file) == str:
with open(gene_list_file, 'r') as gl_file:
gene_list = [line.replace('\n','') for line in gl_file]
else:
gene_list = list(gene_list_file)
gene_inds = []
for gene in gene_list:
if genes.count(gene) > 0:
gene_inds.append(genes.index(gene))
self.CNRs = CNRs[:,gene_inds]
self.genes = list(np.array(genes)[gene_inds])
self.expr_n = expr_n[:,gene_inds]
self.expr_t = expr_t[:,gene_inds]
def filter_CNRs_by_single_ttest_continious(self, min_cf=0.0000001,max_cf=0.1):
'''Filter CNRs by single sample t-test with smooth threshold'''
if (len(self.n_measures) == 1) and (len(self.t_measures) == 1):
print "Warning! Only 1 sample in each group"
print "Statistical weights are off"
return
if not hasattr(self, 's_pval_list'):
self.calculate_single_sample_ttest_pvals()
CNRs = self.CNRs
pvals = self.s_pval_list
koefs = (np.cos((np.log(pvals) - np.log(min_cf))/(np.log(max_cf) - np.log(min_cf))*np.pi) + 1.)/2.
koefs[pvals > max_cf] = 0.
koefs[pvals < min_cf] = 1.
self.s_koefs = koefs
self.CNRs = CNRs*koefs
def calculate_single_sample_ttest_pvals(self):
'''Calculate p-values from single sample t-test'''
expr_t = self.expr_t
expr_n = self.expr_n
mes_size, gene_size = expr_t.shape
all_pvals = []
for i in range(gene_size):
n_sample = expr_n[:,i]
cur_pvals = []
n_sample_r = randomize_samples(n_sample)
cur_pvals = [ttest_func2(n_sample_r,expr_val)[1] for expr_val in expr_t[:,i]]
all_pvals.append(cur_pvals)
all_pvals = np.array(all_pvals).T
all_pvals[all_pvals == 0] = sys.float_info.min
self.s_pval_list = all_pvals
def filter_CNRs_by_ttest_continious(self):
'''Filter CNRs by group t-test without cutoff'''
min_cf = 0.0000001
max_cf = 0.1
if self.CNRs.shape[0] == 1:
self.filter_CNRs_by_single_ttest_continious(min_cf,max_cf)
return
if not hasattr(self, 'pval_list'):
self.calculate_group_ttest_pvals()
pval_list = self.pval_list
self.filter_CNRs_common_continious(pval_list,min_cf,max_cf)
def filter_CNRs_common_continious(self, val_list, min_cf, max_cf):
'''Filter CNRs using list of values'''
CNRs = self.CNRs
koefs = []
for i in range(len(self.genes)):
cur_val = val_list[i]
if cur_val < min_cf:
koef = 1.
elif cur_val > max_cf:
koef = 0.
else:
koef = (np.cos((np.log(cur_val) - np.log(min_cf))/(np.log(max_cf) - np.log(min_cf))*np.pi) + 1.)/2.
koefs.append(koef)
CNRs[:,i] = CNRs[:,i]*koef
self.koefs = koefs
self.CNRs = CNRs
def calculate_group_ttest_pvals(self):
'''Calculate p-values from group t-test'''
expr_t = self.expr_t
expr_n = self.expr_n
pval_list = []
for i in range(len(self.genes)):
t_sample = expr_t[:,i]
n_sample = expr_n[:,i]
t,cur_pval = ttest_func(randomize_samples(t_sample),randomize_samples(n_sample))
pval_list.append(cur_pval)
pval_list = np.array(pval_list)
pval_list[pval_list == 0] = sys.float_info.min
self.pval_list = list(pval_list)
def randomize_samples(sample):
'''Randomize samples with 5% varience in case of equal samples'''
n_samp = len(sample)
if n_samp == 1 or len(np.unique(sample)) > 1:
return sample
mean = np.mean(sample)
std = np.abs(mean/20.)
if std == 0:
std = 0.001
return np.random.normal(mean,std,n_samp)