-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrad_hub_th.py
60 lines (51 loc) · 2.08 KB
/
grad_hub_th.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
from sklearn.base import BaseEstimator,clone
import inspect
import statsmodels.api as sm
import statsmodels.robust.norms as norms
import statsmodels.robust.scale as scale
def huber(x):
res= sm.RLM(x,np.ones(len(x)),M=norms.HuberT()).fit(scale_est=scale.HuberScale())
return res.params[0]
class grad_hub():
def __init__( self,w0=None,eta0=1e-3,beta=1e-3,threshold=0.01,c=1.35,maxiter=1000,stop_delay=5):
args, _, _, values = inspect.getargvalues(inspect.currentframe())
values.pop("self")
for arg, val in values.items():
setattr(self, arg, val)
def psic(self,x):
result=[ xx if np.abs(xx)<self.c else self.c*(2*(xx>0)-1) for xx in x]
return np.array(result)
def dpsic(self,x):
result=[ 1 if np.abs(xx)<self.c else 0 for xx in x]
return result
def sigmoid(self,x):
return 1/(1+np.exp(-x))
def dmu(self,w,x,y):
pertes=np.log(1+np.exp(-x.dot(w)*y))
mut=huber(pertes)
psip=self.dpsic(pertes)
return np.array([np.sum([x[i][j]*self.sigmoid(x[i].dot(w)*y[i])*psip[i] for i in range(len(x))])/np.sum(psip) for j in range(len(x[0]))])+self.beta*w
def fit(self,X,y):
if self.w0 is None :
self.w0=np.zeros(len(X[0]))
w=self.w0
pas = lambda t : 1/(1+self.eta0*t)
risques=[]
compteur=0
while len(risques)<self.stop_delay or np.std(risques[-self.stop_delay:])>self.threshold and compteur < self.maxiter:
t=compteur
w=w+pas(t)*self.dmu(w,X,y)
compteur+=1
self.w=w
risques+=[self.perte(X,y)]
#if (t%10)==0:
# print('epoch ',t,' risque de ',huber(np.log(1+np.exp(-X.dot(w)*y))))
self.w=w
print('Training finished in ',compteur,' iterations')
def perte(self,X,y):
return np.mean(self.predict(X)==y)
def predict_proba(self,xtest):
return np.array([self.sigmoid(xtest[i].dot(self.w)) for i in range(len(xtest))])
def predict(self,xtest):
return self.predict_proba(xtest)>1/2