diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index 4d058d1..c804eb1 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -6,6 +6,12 @@ on: - main pull_request: +concurrency: + # Skip intermediate builds: always. + # Cancel intermediate builds: only if it is a pull request build. + group: ${{ github.workflow }}-${{ github.ref }} + cancel-in-progress: ${{ startsWith(github.ref, 'refs/pull/') }} + jobs: test: name: Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }} diff --git a/.github/workflows/CompatHelper.yml b/.github/workflows/CompatHelper.yml index f7e9516..2a3bb4a 100644 --- a/.github/workflows/CompatHelper.yml +++ b/.github/workflows/CompatHelper.yml @@ -24,8 +24,8 @@ jobs: - name: "Run CompatHelper" run: | import CompatHelper - CompatHelper.main() + CompatHelper.main(; subdirs=["", "docs"]) shell: julia --color=yes {0} env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} - COMPATHELPER_PRIV: ${{ secrets.COMPATHELPER_PRIV }} + COMPATHELPER_PRIV: ${{ secrets.DOCUMENTER_KEY }} diff --git a/.github/workflows/Docs.yml b/.github/workflows/Docs.yml new file mode 100644 index 0000000..4edeebf --- /dev/null +++ b/.github/workflows/Docs.yml @@ -0,0 +1,31 @@ +name: Documentation + +on: + push: + branches: + - main + tags: '*' + pull_request: + +concurrency: + # Skip intermediate builds: always. + # Cancel intermediate builds: only if it is a pull request build. + group: ${{ github.workflow }}-${{ github.ref }} + cancel-in-progress: ${{ startsWith(github.ref, 'refs/pull/') }} + +jobs: + docs: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v2 + - uses: julia-actions/setup-julia@latest + with: + version: '1' + - name: Install dependencies + run: julia --project=docs/ -e 'using Pkg; Pkg.develop(PackageSpec(path=pwd())); Pkg.instantiate()' + - name: Build and deploy + env: + GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # For authentication with GitHub Actions token + DOCUMENTER_KEY: ${{ secrets.DOCUMENTER_KEY }} # For authentication with SSH deploy key + JULIA_DEBUG: Documenter # Print `@debug` statements (https://github.com/JuliaDocs/Documenter.jl/issues/955) + run: julia --project=docs/ docs/make.jl diff --git a/.github/workflows/DocsCleanupPreview.yml b/.github/workflows/DocsCleanupPreview.yml new file mode 100644 index 0000000..4f57bc4 --- /dev/null +++ b/.github/workflows/DocsCleanupPreview.yml @@ -0,0 +1,26 @@ +name: DocsPreviewCleanup + +on: + pull_request: + types: [closed] + +jobs: + cleanup: + runs-on: ubuntu-latest + steps: + - name: Checkout gh-pages branch + uses: actions/checkout@v2 + with: + ref: gh-pages + - name: Delete preview and history + push changes + run: | + if [ -d "previews/PR$PRNUM" ]; then + git config user.name "Documenter.jl" + git config user.email "documenter@juliadocs.github.io" + git rm -rf "previews/PR$PRNUM" + git commit -m "delete preview" + git branch gh-pages-new $(echo "delete history" | git commit-tree HEAD^{tree}) + git push --force origin gh-pages-new:gh-pages + fi + env: + PRNUM: ${{ github.event.number }} diff --git a/.github/workflows/Format.yml b/.github/workflows/Format.yml index a2adf7e..ec14da1 100644 --- a/.github/workflows/Format.yml +++ b/.github/workflows/Format.yml @@ -3,6 +3,12 @@ name: Format on: pull_request: +concurrency: + # Skip intermediate builds: always. + # Cancel intermediate builds: only if it is a pull request build. + group: ${{ github.workflow }}-${{ github.ref }} + cancel-in-progress: ${{ startsWith(github.ref, 'refs/pull/') }} + jobs: format: runs-on: ubuntu-latest @@ -11,14 +17,15 @@ jobs: - uses: julia-actions/setup-julia@latest with: version: 1 - - name: Install JuliaFormatter and format code + - name: Format code run: | - using Pkg: Pkg + using Pkg Pkg.add(; name="JuliaFormatter", uuid="98e50ef6-434e-11e9-1051-2b60c6c9e899") using JuliaFormatter format("."; verbose=true) shell: julia --color=yes {0} - uses: reviewdog/action-suggester@v1 + if: github.event_name == 'pull_request' with: tool_name: JuliaFormatter fail_on_error: true diff --git a/.github/workflows/TagBot.yml b/.github/workflows/TagBot.yml index 778c06f..f49313b 100644 --- a/.github/workflows/TagBot.yml +++ b/.github/workflows/TagBot.yml @@ -12,3 +12,4 @@ jobs: - uses: JuliaRegistries/TagBot@v1 with: token: ${{ secrets.GITHUB_TOKEN }} + ssh: ${{ secrets.DOCUMENTER_KEY }} diff --git a/README.md b/README.md index 69feb1c..3d07471 100644 --- a/README.md +++ b/README.md @@ -2,7 +2,8 @@ Julia implementation of elliptical slice sampling. -[![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active) +[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://turinglang.github.io/EllipticalSliceSampling.jl/stable) +[![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://turinglang.github.io/EllipticalSliceSampling.jl/dev) [![Build Status](https://github.com/TuringLang/EllipticalSliceSampling.jl/workflows/CI/badge.svg?branch=main)](https://github.com/TuringLang/EllipticalSliceSampling.jl/actions?query=workflow%3ACI%20branch%3Amain) [![Codecov](https://codecov.io/gh/TuringLang/EllipticalSliceSampling.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/TuringLang/EllipticalSliceSampling.jl) [![Coveralls](https://coveralls.io/repos/github/TuringLang/EllipticalSliceSampling.jl/badge.svg?branch=main)](https://coveralls.io/github/TuringLang/EllipticalSliceSampling.jl?branch=main) @@ -16,99 +17,15 @@ This package implements elliptical slice sampling in the Julia language, as desc Elliptical slice sampling is a "Markov chain Monte Carlo algorithm for performing inference in models with multivariate Gaussian priors" (Murray, Adams & MacKay (2010)). -Without loss of generality, the originally described algorithm assumes that the Gaussian -prior has zero mean. For convenience we allow the user to specify arbitrary Gaussian -priors with non-zero means and handle the change of variables internally. +Please check the [documentation](https://turinglang.github.io/EllipticalSliceSampling.jl/stable) +for more details. -## Usage +## Poster at JuliaCon 2021 -Probably most users would like to generate a MC Markov chain of samples from -the posterior distribution by calling -```julia -sample([rng, ]ESSModel(prior, loglikelihood), ESS(), N[; kwargs...]) -``` -which returns a vector of `N` samples for approximating the posterior of -a model with a Gaussian prior that allows sampling from the `prior` and -evaluation of the log likelihood `loglikelihood`. +[![EllipticalSliceSampling.jl: MCMC with Gaussian priors](http://img.youtube.com/vi/S5gUED7Uq2Q/0.jpg)](https://www.youtube.com/watch?v=S5gUED7Uq2Q) -You can sample multiple chains in parallel with multiple threads or processes -by running -```julia -sample([rng, ]ESSModel(prior, loglikelihood), ESS(), MCMCThreads(), N, nchains[; kwargs...]) -``` -or -```julia -sample([rng, ]ESSModel(prior, loglikelihood), ESS(), MCMCDistributed(), N, nchains[; kwargs...]) -``` +The slides are available as [Pluto notebook](https://talks.widmann.dev/2021/07/ellipticalslicesampling/). -If you want to have more control about the sampling procedure (e.g., if you -only want to save a subset of samples or want to use another stopping -criterion), the function -```julia -AbstractMCMC.steps( - [rng,] - ESSModel(prior, loglikelihood), - ESS(); - kwargs... -) -``` -gives you access to an iterator from which you can generate an unlimited -number of samples. - -For more details regarding `sample` and `steps` please check the documentation of -[AbstractMCMC.jl](https://github.com/TuringLang/AbstractMCMC.jl). - -### Prior - -You may specify Gaussian priors with arbitrary means. EllipticalSliceSampling.jl -provides first-class support for the scalar and multivariate normal distributions -in [Distributions.jl](https://github.com/JuliaStats/Distributions.jl). For -instance, if the prior distribution is a standard normal distribution, you can -choose -```julia -prior = Normal() -``` - -However, custom Gaussian priors are supported as well. For instance, if you want to -use a custom distribution type `GaussianPrior`, the following methods should be -implemented: -```julia -# state that the distribution is actually Gaussian -EllipticalSliceSampling.isgaussian(::Type{<:GaussianPrior}) = true - -# define the mean of the distribution -# alternatively implement `proposal(prior, ...)` and -# `proposal!(out, prior, ...)` (only if the samples are mutable) -Statistics.mean(dist::GaussianPrior) = ... - -# define how to sample from the distribution -# only one of the following methods is needed: -# - if the samples are immutable (e.g., numbers or static arrays) only -# `rand(rng, dist)` should be implemented -# - otherwise only `rand!(rng, dist, sample)` is required -Base.rand(rng::AbstractRNG, dist::GaussianPrior) = ... -Random.rand!(rng::AbstractRNG, dist::GaussianPrior, sample) = ... -``` - -### Log likelihood - -In addition to the prior, you have to specify a Julia implementation of -the log likelihood function. Here the predefined log densities and log -likelihood functions in -[Distributions.jl](https://github.com/JuliaStats/Distributions.jl) might -be useful. - -### Progress monitor - -If you use a package such as [Juno](https://junolab.org/) or -[TerminalLoggers.jl](https://github.com/c42f/TerminalLoggers.jl) that supports -progress logs created by the -[ProgressLogging.jl](https://github.com/JunoLab/ProgressLogging.jl) API, then you can -monitor the progress of the sampling algorithm. If you do not specify a progress -logging frontend explicitly, -[AbstractMCMC.jl](https://github.com/TuringLang/AbstractMCMC.jl) picks a frontend -for you automatically. - -## Bibliography +## References Murray, I., Adams, R. & MacKay, D.. (2010). Elliptical slice sampling. Proceedings of Machine Learning Research, 9:541-548. diff --git a/docs/.gitignore b/docs/.gitignore new file mode 100644 index 0000000..b7861ef --- /dev/null +++ b/docs/.gitignore @@ -0,0 +1,2 @@ +/Manifest.toml +/build/ \ No newline at end of file diff --git a/docs/Project.toml b/docs/Project.toml new file mode 100644 index 0000000..3a52a5d --- /dev/null +++ b/docs/Project.toml @@ -0,0 +1,5 @@ +[deps] +Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4" + +[compat] +Documenter = "0.27" diff --git a/docs/make.jl b/docs/make.jl new file mode 100644 index 0000000..d58323f --- /dev/null +++ b/docs/make.jl @@ -0,0 +1,17 @@ +using Documenter +using EllipticalSliceSampling + +makedocs(; + sitename="EllipticalSliceSampling", + format=Documenter.HTML(), + modules=[EllipticalSliceSampling], + pages=["Home" => "index.md"], + strict=true, + checkdocs=:exports, +) + +deploydocs(; + repo="github.com/TuringLang/EllipticalSliceSampling.jl.git", + devbranch="main", + push_preview=true, +) diff --git a/docs/src/index.md b/docs/src/index.md new file mode 100644 index 0000000..ccf01e2 --- /dev/null +++ b/docs/src/index.md @@ -0,0 +1,114 @@ +# EllipticalSliceSampling + +*Julia implementation of elliptical slice sampling.* + +## Overview + +This package implements elliptical slice sampling in the Julia language, as described in +[Murray, Adams & MacKay (2010)](http://proceedings.mlr.press/v9/murray10a/murray10a.pdf). + +Elliptical slice sampling is a "Markov chain Monte Carlo algorithm for performing +inference in models with multivariate Gaussian priors" (Murray, Adams & MacKay (2010)). + +Without loss of generality, the originally described algorithm assumes that the Gaussian +prior has zero mean. For convenience we allow the user to specify arbitrary Gaussian +priors with non-zero means and handle the change of variables internally. + +## Poster at JuliaCon 2021 + +[![EllipticalSliceSampling.jl: MCMC with Gaussian priors](http://img.youtube.com/vi/S5gUED7Uq2Q/0.jpg)](https://www.youtube.com/watch?v=S5gUED7Uq2Q) + +The slides are available as [Pluto notebook](https://talks.widmann.dev/2021/07/ellipticalslicesampling/). + +## Usage + +Probably most users would like to generate a MC Markov chain of samples from +the posterior distribution by calling +```julia +sample([rng, ]ESSModel(prior, loglikelihood), ESS(), N[; kwargs...]) +``` +which returns a vector of `N` samples for approximating the posterior of +a model with a Gaussian prior that allows sampling from the `prior` and +evaluation of the log likelihood `loglikelihood`. + +You can sample multiple chains in parallel with multiple threads or processes +by running +```julia +sample([rng, ]ESSModel(prior, loglikelihood), ESS(), MCMCThreads(), N, nchains[; kwargs...]) +``` +or +```julia +sample([rng, ]ESSModel(prior, loglikelihood), ESS(), MCMCDistributed(), N, nchains[; kwargs...]) +``` + +If you want to have more control about the sampling procedure (e.g., if you +only want to save a subset of samples or want to use another stopping +criterion), the function +```julia +AbstractMCMC.steps( + [rng,] + ESSModel(prior, loglikelihood), + ESS(); + kwargs... +) +``` +gives you access to an iterator from which you can generate an unlimited +number of samples. + +For more details regarding `sample` and `steps` please check the documentation of +[AbstractMCMC.jl](https://github.com/TuringLang/AbstractMCMC.jl). + +### Prior + +You may specify Gaussian priors with arbitrary means. EllipticalSliceSampling.jl +provides first-class support for the scalar and multivariate normal distributions +in [Distributions.jl](https://github.com/JuliaStats/Distributions.jl). For +instance, if the prior distribution is a standard normal distribution, you can +choose +```julia +prior = Normal() +``` + +However, custom Gaussian priors are supported as well. For instance, if you want to +use a custom distribution type `GaussianPrior`, the following methods should be +implemented: +```julia +# state that the distribution is actually Gaussian +EllipticalSliceSampling.isgaussian(::Type{<:GaussianPrior}) = true + +# define the mean of the distribution +# alternatively implement `proposal(prior, ...)` and +# `proposal!(out, prior, ...)` (only if the samples are mutable) +Statistics.mean(dist::GaussianPrior) = ... + +# define how to sample from the distribution +# only one of the following methods is needed: +# - if the samples are immutable (e.g., numbers or static arrays) only +# `rand(rng, dist)` should be implemented +# - otherwise only `rand!(rng, dist, sample)` is required +Base.rand(rng::AbstractRNG, dist::GaussianPrior) = ... +Random.rand!(rng::AbstractRNG, dist::GaussianPrior, sample) = ... +``` + +### Log likelihood + +In addition to the prior, you have to specify a Julia implementation of +the log likelihood function. Here the predefined log densities and log +likelihood functions in +[Distributions.jl](https://github.com/JuliaStats/Distributions.jl) might +be useful. + +### Progress monitor + +If you use a package such as [Juno](https://junolab.org/) or +[TerminalLoggers.jl](https://github.com/c42f/TerminalLoggers.jl) that supports +progress logs created by the +[ProgressLogging.jl](https://github.com/JunoLab/ProgressLogging.jl) API, then you can +monitor the progress of the sampling algorithm. If you do not specify a progress +logging frontend explicitly, +[AbstractMCMC.jl](https://github.com/TuringLang/AbstractMCMC.jl) picks a frontend +for you automatically. + +## References + +Murray, I., Adams, R. & MacKay, D.. (2010). Elliptical slice sampling. Proceedings of Machine Learning Research, 9:541-548.