-
Notifications
You must be signed in to change notification settings - Fork 2
/
fir_minphase.m
210 lines (191 loc) · 5.65 KB
/
fir_minphase.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
% Determines minimum-order minimum-phase filter that has a magnitude
% response that meets the magnitude amplitude/ripple specifications.
% It will only return filters with an odd number of taps.
%
% function [h, status] = fir_minphase(n, f, a, d, use_max, dbg)
%
% Inputs: --- similar to cfirpm
% n: max number of taps to try
% f: frequency bands
% a: amplitude at band edges
% d: ripple in bands
% use_max: don't search for min order, use n taps
% dbg: flag to turn on debugging statements/plots
%
% NOTE: why must spectral factorization accept odd number taps only?
% No chance to do even filters?
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Spectral-Spatial RF Pulse Design for MRI and MRSI MATLAB Package
%
% Authors: Adam B. Kerr and Peder E. Z. Larson
%
% (c)2007-2011 Board of Trustees, Leland Stanford Junior University and
% The Regents of the University of California.
% All Rights Reserved.
%
% Please see the Copyright_Information and README files included with this
% package. All works derived from this package must be properly cited.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% $Header: /home/adam/cvsroot/src/ss/fir_minphase.m,v 1.10 2012/06/08 21:35:02 peder Exp $
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Calls fir_min_order to determine minimum-length odd filter that
% meets magnitude-squared response, then performs spectral
% factorization
%
function [hn,status,fn,an,dn] = fir_minphase(n, f, a, d, use_max, dbg)
if nargin < 4,
error('Usage: function [h, status] = fir_minphase(n, f, a, d, use_max,dbg)');
end;
if nargin < 5,
use_max = 0;
end;
if nargin < 6,
dbg = 0;
end;
hn = [];
status = 'Failed';
% Get magnitude-squared spec
%
d2 = [d(:).'; d(:).'];
d2 = d2(:).';
mxspec = (a+d2).^2;
mnspec = max(0,(a-d2)).^2;
% Get "zero" threshold of 2% of lowest spec
%
ztol_perc = 2;
ztol = min(ztol_perc/100 * (mxspec-mnspec));
% Offset magnitude-squared spec by ztol, get n
%
mnspec = max(ztol,mnspec);
a_sqr = (mxspec + mnspec)/2;
d2_sqr = (mxspec-mnspec)/2;
d_sqr = d2_sqr(1:2:end);
n_max = 2*n - 1;
% Get minimum-order linear-phase filter that meets
% magnitude response
%
odd_only = 1;
if ~use_max,
[r, status] = fir_min_order(n_max, f, a_sqr, d_sqr, odd_only, ztol, dbg);
else
[r, status] = fir_pm(n_max, f, a_sqr, d_sqr, ztol, dbg);
end;
if strcmp(status, 'Failed')
fprintf(1,'Failed to get filter\n');
return;
end
Rok = 0;
while ~Rok,
% Expand passband/transition regions to reduce
% transition ripple
%
[rn, fn, an, dn] = fir_expand(length(r), f, a_sqr, d_sqr, ztol, dbg);
oversamp = 15;
m = 2 * oversamp * length(rn);
m2 = 2^ceil(log2(m));
R = real(fftf(rn,m2));
% Check magnitude response to make sure that it is everywhere 0
%
if dbg,
freq = [-m2/2:m2/2-1]/m2*2;
Ro = real(fftf(r,m2)); % Linear-phase must have real autocorrelation
figure;
plot(freq(:),real(Ro(:)));
hold on;
plot(freq(:),real(R(:)),'r');
plot_spec(fn,an,dn,'g');
plot_spec(f,a_sqr,d_sqr,'k');
title('Squared Frequency Response of Autocorrelation Fcns');
xlabel('Normalized Frequency');
end;
% Now use spectral factorization to get return filter
% --- first offset to make sure it's positive
if min(R) < 0,
min_stop = min(a_sqr + d2_sqr);
Rtol_perc = 0.1; % 10% stopband tolerance
Rtol = Rtol_perc * min_stop; % Rule of thumb
if min(R) < -Rtol,
fprintf(1, 'Autocorrelation has negative value\n');
fprintf(1, ' Tol (%d%% stopband): %e Actual: %e\n', ...
round(Rtol_perc*100), Rtol, -min(R));
% Test spectral factorization
%
rn = rn + Rtol;
hn = spectral_fact(rn);
hn = conj(hn(end:-1:1));
% Get squared frequency response and check against specs
% + Rtol
%
H = (fftf(hn, m2));
freq = [-m2/2:m2/2-1]/m2*2;
H2 = abs(H).^2; % Squared-mag response (H is Min-Phase)
nband = length(f)/2;
atol = 0.05;
Rok = 1;
for band = 1:nband,
idx = find((freq >= f(band*2-1)) & (freq <= f(band*2)));
amax = (1+atol)*(a_sqr(band*2-1) + d_sqr(band) + Rtol);
amin = (1-atol)*(a_sqr(band*2-1) - d_sqr(band));
fail = find((H2(idx) > amax) | ...
(H2(idx) < amin));
if fail,
fprintf(1, ' Spectral factorization doesn''t meet specs\n');
fprintf(1, ' Increase number of taps to: %d\n', ...
length(r)+2);
if (dbg)
fprintf(1,'<Pausing>');
figure;
plot_spec(f,a_sqr,d_sqr,'k');
hold on;
plot(freq(:),H2(:));
title('Squared Frequency Response of Factorized Filter');
xlabel('Normalized Frequency');
pause;
end;
fprintf(1,'\r \r');
[r, stat] = fir_pm(length(r)+2, f, a_sqr, d_sqr, ztol, ...
dbg);
Rok = 0;
break;
end;
end;
else
if (dbg)
fprintf(1, 'Autocorrelation has negative value, but within tol\n');
fprintf(1, ' Tol (%d%% stopband): %e Actual: %e\n', ...
round(Rtol_perc*100), Rtol, -min(R));
end;
rn = rn - min(R);
Rok = 1;
end;
else
if dbg,
fprintf(1,'Autocorrelation OK\n');
end;
Rok = 1;
end;
end;
% Spectral factorize and time reverse
%
h = spectral_fact(r);
h = conj(h(end:-1:1));
hn = spectral_fact(rn);
hn = conj(hn(end:-1:1));
if dbg,
m = 512;
freq = [-m/2:m/2-1]/m*2;
H = abs(fftf(h,512));
Hn = abs(fftf(hn,512));
figure;
plot(freq,H);
hold on;
plot(freq,Hn,'r');
plot_spec(f,a,d,'k');
title('Frequency Response Factorized Filters');
end;