-
Notifications
You must be signed in to change notification settings - Fork 1
/
generate_chunk_kernel.f90
142 lines (124 loc) · 4.95 KB
/
generate_chunk_kernel.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
!Crown Copyright 2014 AWE.
!
! This file is part of TeaLeaf.
!
! TeaLeaf is free software: you can redistribute it and/or modify it under
! the terms of the GNU General Public License as published by the
! Free Software Foundation, either version 3 of the License, or (at your option)
! any later version.
!
! TeaLeaf is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
! FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
! details.
!
! You should have received a copy of the GNU General Public License along with
! TeaLeaf. If not, see http://www.gnu.org/licenses/.
!> @brief Fortran mesh chunk generator
!> @author David Beckingsale, Wayne Gaudin
!> @details Generates the field data on a mesh chunk based on the user specified
!> input for the states.
!>
!> Note that state one is always used as the background state, which is then
!> overwritten by further state definitions.
MODULE generate_chunk_kernel_module
CONTAINS
SUBROUTINE generate_chunk_kernel(x_min,x_max,y_min,y_max, &
vertexx, &
vertexy, &
cellx, &
celly, &
density, &
energy0, &
u0, &
number_of_states, &
state_density, &
state_energy, &
state_xmin, &
state_xmax, &
state_ymin, &
state_ymax, &
state_radius, &
state_geometry, &
g_rect, &
g_circ, &
g_point)
IMPLICIT NONE
INTEGER :: x_min,x_max,y_min,y_max
REAL(KIND=8), DIMENSION(x_min-2:x_max+3) :: vertexx
REAL(KIND=8), DIMENSION(y_min-2:y_max+3) :: vertexy
REAL(KIND=8), DIMENSION(y_min-2:y_max+3) :: vertexdy
REAL(KIND=8), DIMENSION(x_min-2:x_max+2) :: cellx
REAL(KIND=8), DIMENSION(y_min-2:y_max+2) :: celly
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2) :: density,energy0
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2) :: u0
INTEGER :: number_of_states
REAL(KIND=8), DIMENSION(number_of_states) :: state_density
REAL(KIND=8), DIMENSION(number_of_states) :: state_energy
REAL(KIND=8), DIMENSION(number_of_states) :: state_xmin
REAL(KIND=8), DIMENSION(number_of_states) :: state_xmax
REAL(KIND=8), DIMENSION(number_of_states) :: state_ymin
REAL(KIND=8), DIMENSION(number_of_states) :: state_ymax
REAL(KIND=8), DIMENSION(number_of_states) :: state_radius
INTEGER , DIMENSION(number_of_states) :: state_geometry
INTEGER :: g_rect
INTEGER :: g_circ
INTEGER :: g_point
REAL(KIND=8) :: radius,x_cent,y_cent
INTEGER :: state
INTEGER :: j,k,jt,kt
! State 1 is always the background state
!$OMP PARALLEL SHARED(x_cent,y_cent)
!$OMP DO
DO k=y_min-2,y_max+2
DO j=x_min-2,x_max+2
energy0(j,k)=state_energy(1)
ENDDO
ENDDO
!$OMP END DO
!$OMP DO
DO k=y_min-2,y_max+2
DO j=x_min-2,x_max+2
density(j,k)=state_density(1)
ENDDO
ENDDO
!$OMP END DO
DO state=2,number_of_states
x_cent=state_xmin(state)
y_cent=state_ymin(state)
!$OMP DO PRIVATE(radius,jt,kt)
DO k=y_min-2,y_max+2
DO j=x_min-2,x_max+2
IF(state_geometry(state).EQ.g_rect ) THEN
IF(vertexx(j+1).GE.state_xmin(state).AND.vertexx(j).LT.state_xmax(state)) THEN
IF(vertexy(k+1).GE.state_ymin(state).AND.vertexy(k).LT.state_ymax(state)) THEN
energy0(j,k)=state_energy(state)
density(j,k)=state_density(state)
ENDIF
ENDIF
ELSEIF(state_geometry(state).EQ.g_circ ) THEN
radius=SQRT((cellx(j)-x_cent)*(cellx(j)-x_cent)+(celly(k)-y_cent)*(celly(k)-y_cent))
IF(radius.LE.state_radius(state))THEN
energy0(j,k)=state_energy(state)
density(j,k)=state_density(state)
ENDIF
ELSEIF(state_geometry(state).EQ.g_point) THEN
IF(vertexx(j).EQ.x_cent .AND. vertexy(k).EQ.y_cent) THEN
energy0(j,k)=state_energy(state)
density(j,k)=state_density(state)
ENDIF
ENDIF
ENDDO
ENDDO
!$OMP END DO
ENDDO
!$OMP DO
DO k=y_min-1, y_max+1
DO j=x_min-1, x_max+1
u0(j,k) = energy0(j,k) * density(j,k)
ENDDO
ENDDO
!$OMP END DO
!$OMP END PARALLEL
END SUBROUTINE generate_chunk_kernel
END MODULE generate_chunk_kernel_module