-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_experiment.py
449 lines (374 loc) · 19.9 KB
/
run_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import os
import re
import subprocess
import csv
# Define the base directory containing the graph datasets
BASE_DIR = "/media/Data/00_GraphDatasets/GBREW"
BASE_NVME_DIR = "/media/NVMeData/00_GraphDatasets/GBREW"
RESULT_DIR = "bench/results"
PARALLEL = os.cpu_count() # Use all available CPU cores
LOG_DIR_RUN = os.path.join(RESULT_DIR, "logs_run")
LOG_DIR_ORDER = os.path.join(RESULT_DIR, "logs_order")
os.makedirs(LOG_DIR_RUN, exist_ok=True)
os.makedirs(LOG_DIR_ORDER, exist_ok=True)
# Define the list of graphs and their extensions
graph_extensions = {
"SLJ1": "sg",
"RD": "sg",
"CPAT": "sg",
"CORKT": "sg",
"SPKC": "sg",
"GPLUS": "sg",
"WIKLE": "sg",
"WEB01": "sg",
"TWTR": "sg"
}
# Define the list of kernels
kernels = [
{"name": "bc", "trials": 20, "iterations": 10},
{"name": "bfs", "trials": 20, "iterations": 10},
{"name": "cc", "trials": 20, "iterations": 10},
{"name": "cc_sv", "trials": 20, "iterations": 10},
{"name": "pr", "trials": 10, "iterations": 200},
{"name": "pr_spmv", "trials": 10, "iterations": 200},
{"name": "sssp", "trials": 20, "iterations": 10}
]
# Regular expressions for parsing timing data from benchmark outputs
time_patterns = {
"reorder_time": {
"GraphBrew": re.compile(r"\bGraphBrewOrder\b Map Time:\s*([\d\.]+)"),
"HubClusterDBG": re.compile(r"\bHubClusterDBG\b Map Time:\s*([\d\.]+)"),
"HubCluster": re.compile(r"\bHubCluster\b Map Time:\s*([\d\.]+)"),
"HubSortDBG": re.compile(r"\bHubSortDBG\b Map Time:\s*([\d\.]+)"),
"HubSort": re.compile(r"\bHubSort\b Map Time:\s*([\d\.]+)"),
"Leiden": re.compile(r"\bLeidenOrder\b Map Time:\s*([\d\.]+)"),
"Original": re.compile(r"\bOriginal\b Map Time:\s*([\d\.]+)"),
"RabbitOrder": re.compile(r"\bRabbitOrder\b Map Time:\s*([\d\.]+)"),
"Random": re.compile(r"\bRandom\b Map Time:\s*([\d\.]+)"),
"Corder": re.compile(r"\bCOrder\b Map Time:\s*([\d\.]+)"),
"Gorder": re.compile(r"\bGOrder\b Map Time:\s*([\d\.]+)"),
"DBG": re.compile(r"\bDBG\b Map Time:\s*([\d\.]+)"),
"RCM": re.compile(r"\bRCMOrder\b Map Time:\s*([\d\.]+)"),
"Sort": re.compile(r"\bSort\b Map Time:\s*([\d\.]+)")
},
"trial_time": {
"Average": re.compile(r"\bAverage\b Time:\s*([\d\.]+)")
}
}
reorder_option_mapping = {
"GraphBrew1": "-o13:10:1",
"GraphBrew5": "-o13:10:5",
"GraphBrew8": "-o13:10:8",
"GraphBrew9": "-o13:10:9",
"GraphBrew10": "-o13:10:10",
"GraphBrew11": "-o13:10:11",
"GraphBrew12": "-o13:10:12"
}
single_reorder_option_mapping = {
# "Random": "-o0", # this is your baseline
# "Sort": "-o2",
# "HubSort": "-o3",
# "HubCluster": "-o4",
# "DBG": "-o5",
# "HubSortDBG": "-o6",
# "HubClusterDBG": "-o7",
"RabbitOrder": "-o8",
# "Gorder": "-o9",
# "Corder": "-o10",
# "RCM": "-o11",
"GraphBrew_12_025": "-o12:0.25",
"GraphBrew_12_050": "-o12:0.5",
"GraphBrew_12_075": "-o12:0.75",
"GraphBrew_12_100": "-o12:1.0",
"GraphBrew_12_125": "-o12:1.25",
"GraphBrew_12_175": "-o12:1.75",
"GraphBrew_12_200": "-o12:2.0",
"GraphBrew_13_15_5_025" : "-o13:15:5:0.25",
"GraphBrew_13_15_5_100" : "-o13:15:5:1.0",
"GraphBrew_13_15_5_175" : "-o13:15:5:1.75",
"GraphBrew_13_15_8_025" : "-o13:15:8:0.25",
"GraphBrew_13_15_8_100" : "-o13:15:8:1.0",
"GraphBrew_13_15_8_175" : "-o13:15:8:1.75",
"GraphBrew_13_15_9_025" : "-o13:15:9:0.25",
"GraphBrew_13_15_9_100" : "-o13:15:9:1.0",
"GraphBrew_13_15_9_175" : "-o13:15:9:1.75",
"GraphBrew_13_15_10_025" : "-o13:15:10:0.25",
"GraphBrew_13_15_10_100" : "-o13:15:10:1.0",
"GraphBrew_13_15_10_175" : "-o13:15:10:1.75",
"GraphBrew_13_15_11_025" : "-o13:15:11:0.25",
"GraphBrew_13_15_11_100" : "-o13:15:11:1.0",
"GraphBrew_13_15_11_175" : "-o13:15:11:1.75",
"GraphBrew_13_15_12_025" : "-o13:15:12:0.25",
"GraphBrew_13_15_12_100" : "-o13:15:12:1.00",
"GraphBrew_13_15_12_175" : "-o13:15:12:1.75",
}
# reorder_option_mapping = {
# # "Random": "-o0", # this is your baseline
# "DBG": "-o5",
# "RabbitOrder": "-o8 -o5",
# "Gorder": "-o9 -o5",
# "Corder": "-o10 -o5",
# "RCM": "-o11 -o5",
# "Leiden": "-o12 -o5"
# }
def parse_reorder_output(output):
timings = {}
for key, pattern in time_patterns["reorder_time"].items():
match = pattern.search(output)
if match:
timings[key] = float(match.group(1))
return timings
def parse_kernel_output(output):
match = time_patterns["trial_time"]["Average"].search(output)
if match:
return float(match.group(1))
return None
def run_reorders():
print("Starting reorder process...")
results = {}
affinity = "0-31" # Specify CPU IDs from 0 to 31
os.environ["GOMP_CPU_AFFINITY"] = affinity
print(f"Setting GOMP_CPU_AFFINITY to {affinity}")
# Iterate over each graph
for graph, ext in graph_extensions.items():
print(f"Processing graph: {graph}")
# Construct the graph file path
graph_file = os.path.join(BASE_DIR, graph, f"graph.{ext}")
random_graph_file = os.path.join(BASE_DIR, graph, f"graph_0.sg")
reorder_name = "Random"
reorder_option = "-o1"
# Construct a random graph if it does not exist
if not os.path.isfile(random_graph_file):
print(f"Running converter with reorder {reorder_name} option: {reorder_option}")
print(f"Output file: {random_graph_file}")
make_command = f"make run-converter GRAPH_BENCH='-f {graph_file} -b {random_graph_file}' RUN_PARAMS='{reorder_option}' FLUSH_CACHE=0 PARALLEL={PARALLEL}"
log_file = os.path.join(LOG_DIR_ORDER, f"{graph}_initial.log")
with open(log_file, 'w') as log:
print(f"Executing command: {make_command}")
subprocess.run(make_command, shell=True, check=True, stdout=log, stderr=log)
# Check if the random graph file exists
if os.path.isfile(random_graph_file):
print(f"Graph file found: {random_graph_file}")
results[graph] = {}
# Iterate over each reorder option
for reorder_name, reorder_option in list(single_reorder_option_mapping.items()):
if ' ' in reorder_option:
# Handle multiple options
option_numbers = '_'.join([opt.split('o')[1] for opt in reorder_option.split()])
output_file = os.path.join(BASE_NVME_DIR, graph, f"graph_{option_numbers}.sg")
else:
# Handle single option
option_number = reorder_option.split('o')[1]
output_file = os.path.join(BASE_NVME_DIR, graph, f"graph_{option_number}.sg")
# Ensure the graph directories exist
os.makedirs(os.path.join(BASE_DIR, graph), exist_ok=True)
os.makedirs(os.path.join(BASE_NVME_DIR, graph), exist_ok=True)
# Skip if the output file already exists
if os.path.isfile(output_file):
print(f"Output file already exists, skipping: {output_file}")
continue
# Print the current stage
print(f"Running converter with reorder {reorder_name} option: {reorder_option}")
print(f"Output file: {output_file}")
# Construct and run the make command
make_command = f"make run-converter GRAPH_BENCH='-f {random_graph_file} -b {output_file}' RUN_PARAMS='{reorder_option}' FLUSH_CACHE=0 PARALLEL={PARALLEL}"
log_file = os.path.join(LOG_DIR_ORDER, f"{graph}_{reorder_name}.log")
with open(log_file, 'w') as log:
print(f"Executing command: {make_command}")
result = subprocess.run(make_command, shell=True, check=True, stdout=log, stderr=log)
# Parse the output from the log file
with open(log_file, 'r') as log:
timings = parse_reorder_output(log.read())
# Record the results
for key, time in timings.items():
if reorder_name in single_reorder_option_mapping:
results[graph][reorder_name] = time
print(f"Completed conversion for reorder option: {reorder_option}\n")
else:
print(f"Graph file not found: {random_graph_file}")
# Check if results are empty
if not results:
print("No new conversions were performed. All graph files already exist.")
return
# Write results to CSV
csv_file = os.path.join(RESULT_DIR, "reorder_results.csv")
with open(csv_file, mode='w', newline='') as file:
writer = csv.writer(file)
header = ["Graph"] + list(single_reorder_option_mapping.keys())
writer.writerow(header)
for graph, timings in results.items():
row = [graph] + [timings.get(reorder_name, '') for reorder_name in single_reorder_option_mapping.keys()]
writer.writerow(row)
print("Reorder process completed.")
def run_kernels():
print("Starting kernel execution process...")
kernel_results = {kernel["name"]: {} for kernel in kernels}
# Iterate over each graph
for graph in graph_extensions.keys():
print(f"Processing graph: {graph}")
# Iterate over each reorder option
for reorder_name, reorder_option in single_reorder_option_mapping.items():
if ' ' in reorder_option:
# Handle multiple options
option_numbers = '_'.join([opt.split('o')[1] for opt in reorder_option.split()])
output_file = os.path.join(BASE_DIR, graph, f"graph_{option_numbers}.sg")
else:
# Handle single option
option_number = reorder_option.split('o')[1]
output_file = os.path.join(BASE_DIR, graph, f"graph_{option_number}.sg")
# Check if the converted graph file exists
if os.path.isfile(output_file):
print(f"Converted graph file found: {output_file}")
# Run kernels on the converted graph file
for kernel in kernels:
kernel_command = f"make run-{kernel['name']} GRAPH_BENCH='-f {output_file}' RUN_PARAMS='-l -n {kernel['trials']}' FLUSH_CACHE=1 PARALLEL={PARALLEL}"
if kernel["name"] in ["pr", "pr_spmv"]:
kernel_command = f"make run-{kernel['name']} GRAPH_BENCH='-f {output_file}' RUN_PARAMS='-l -n {kernel['trials']} -i {kernel['iterations']}' FLUSH_CACHE=1 PARALLEL={PARALLEL}"
log_file = os.path.join(LOG_DIR_RUN, f"{graph}_{reorder_name}_{kernel['name']}.log")
print(f"Running kernel: {kernel['name']} with {kernel['trials']} trials and {kernel['iterations']} iterations")
print(f"Executing command: {kernel_command}")
# # Run the command and log the output
# with open(log_file, 'w') as log:
# result = subprocess.run(kernel_command, shell=True, check=True, stdout=log, stderr=log)
# Parse the output from the log file
with open(log_file, 'r') as log:
average_time = parse_kernel_output(log.read())
if average_time is not None:
if graph not in kernel_results[kernel['name']]:
kernel_results[kernel['name']][graph] = {}
kernel_results[kernel['name']][graph][reorder_name] = average_time
print(f"Completed kernel: {kernel['name']}\n")
else:
print(f"Converted graph file not found: {output_file}")
# Check if kernel results are empty
if all(not results for results in kernel_results.values()):
print("No kernels were executed. All converted graph files already exist or were not found.")
return
# Write results to CSV for each kernel
for kernel_name, results in kernel_results.items():
if results:
csv_file = os.path.join(RESULT_DIR, f"{kernel_name}_trial_time_results.csv")
with open(csv_file, mode='w', newline='') as file:
writer = csv.writer(file)
header = ["Graph"] + list(single_reorder_option_mapping.keys())
writer.writerow(header)
for graph, timings in results.items():
row = [graph] + [timings.get(reorder_name, '') for reorder_name in single_reorder_option_mapping.keys()]
writer.writerow(row)
print("Kernel execution process completed.")
def run_kernels_affin():
print("Starting kernel execution process...")
# Define different CPU affinity settings to experiment with
affinities = [
"0-15", # First 16 physical cores
"0-15:2", # Every second core in the first 16 cores
"16-31", # Last 16 logical cores (Hyper-threaded pairs of the first 16 cores)
"0-31", # All 32 threads
"0-31:2" # Every second thread in all 32 threads
]
kernel_results = {kernel["name"]: {} for kernel in kernels}
# Iterate over each graph
for graph in graph_extensions.keys():
print(f"Processing graph: {graph}")
# Iterate over each reorder option
for reorder_name, reorder_option in single_reorder_option_mapping.items():
if ' ' in reorder_option:
# Handle multiple options
option_numbers = '_'.join([opt.split('o')[1] for opt in reorder_option.split()])
output_file = os.path.join(BASE_DIR, graph, f"graph_{option_numbers}.sg")
else:
# Handle single option
option_number = reorder_option.split('o')[1]
output_file = os.path.join(BASE_DIR, graph, f"graph_{option_number}.sg")
# Check if the converted graph file exists
if os.path.isfile(output_file):
print(f"Converted graph file found: {output_file}")
# Run kernels on the converted graph file with different affinity settings
for affinity in affinities:
os.environ["GOMP_CPU_AFFINITY"] = affinity
print(f"Setting GOMP_CPU_AFFINITY to {affinity}")
for kernel in kernels:
kernel_command = f"make run-{kernel['name']} GRAPH_BENCH='-f {output_file}' RUN_PARAMS='-l -n {kernel['trials']}' FLUSH_CACHE=1 PARALLEL={PARALLEL}"
if kernel["name"] in ["pr", "pr_spmv"]:
kernel_command = f"make run-{kernel['name']} GRAPH_BENCH='-f {output_file}' RUN_PARAMS='-l -n {kernel['trials']} -i {kernel['iterations']}' FLUSH_CACHE=1 PARALLEL={PARALLEL}"
log_file = os.path.join(LOG_DIR_RUN, f"{graph}_{reorder_name}_{kernel['name']}_{affinity.replace(' ', '_')}.log")
print(f"Running kernel: {kernel['name']} with {kernel['trials']} trials and {kernel['iterations']} iterations")
print(f"Executing command: {kernel_command}")
# Run the command and log the output
with open(log_file, 'w') as log:
result = subprocess.run(kernel_command, shell=True, check=True, stdout=log, stderr=log)
# Parse the output from the log file
with open(log_file, 'r') as log:
average_time = parse_kernel_output(log.read())
if average_time is not None:
if graph not in kernel_results[kernel['name']]:
kernel_results[kernel['name']][graph] = {}
kernel_results[kernel['name']][graph][reorder_name] = average_time
print(f"Completed kernel: {kernel['name']} with affinity {affinity}\n")
else:
print(f"Converted graph file not found: {output_file}")
# Check if kernel results are empty
if all(not results for results in kernel_results.values()):
print("No kernels were executed. All converted graph files already exist or were not found.")
return
# Write results to CSV for each kernel
for kernel_name, results in kernel_results.items():
if results:
csv_file = os.path.join(RESULT_DIR, f"{kernel_name}_trial_time_results.csv")
with open(csv_file, mode='w', newline='') as file:
writer = csv.writer(file)
header = ["Graph"] + list(single_reorder_option_mapping.keys())
writer.writerow(header)
for graph, timings in results.items():
row = [graph] + [timings.get(reorder_name, '') for reorder_name in single_reorder_option_mapping.keys()]
writer.writerow(row)
print("Kernel execution process completed.")
def run_convert():
print("Starting reorder process...")
results = {}
# Iterate over each graph
for graph, ext in graph_extensions.items():
print(f"Processing graph: {graph}")
results[graph] = {}
# Iterate over each reorder option
for reorder_name, reorder_option in list(single_reorder_option_mapping.items()):
if ' ' in reorder_option:
# Handle multiple options
option_numbers = '_'.join([opt.split('o')[1] for opt in reorder_option.split()])
output_file = os.path.join(BASE_DIR, graph, f"graph_{option_numbers}.sg")
output_file_conv = os.path.join(BASE_NVME_DIR, graph, f"graph_{option_numbers}.sg")
else:
# Handle single option
option_number = reorder_option.split('o')[1]
output_file = os.path.join(BASE_DIR, graph, f"graph_{option_number}.sg")
output_file_conv = os.path.join(BASE_NVME_DIR, graph, f"graph_{option_number}.sg")
# Ensure the graph directories exist
os.makedirs(os.path.join(BASE_DIR, graph), exist_ok=True)
os.makedirs(os.path.join(BASE_NVME_DIR, graph), exist_ok=True)
# Skip if the output file already exists
if os.path.isfile(output_file_conv):
print(f"Output file already exists, skipping: {output_file_conv}")
continue
# Print the current stage
print(f"Running converter with reorder {reorder_name} option: {reorder_option}")
print(f"Output file: {output_file}")
# Construct and run the make command
make_command = f"make run-converter GRAPH_BENCH='-f {output_file} -b {output_file_conv} -p {output_file_conv}' RUN_PARAMS='-o5' FLUSH_CACHE=0 PARALLEL={PARALLEL}"
log_file = os.path.join(LOG_DIR_ORDER, f"{graph}_{reorder_name}.log")
with open(log_file, 'w') as log:
print(f"Executing command: {make_command}")
result = subprocess.run(make_command, shell=True, check=True, stdout=log, stderr=log)
# Parse the output from the log file
with open(log_file, 'r') as log:
timings = parse_reorder_output(log.read())
# Record the results
for key, time in timings.items():
if reorder_name in single_reorder_option_mapping:
results[graph][reorder_name] = time
print(f"Completed conversion for reorder option: {reorder_option}\n")
print("Convert process completed.")
if __name__ == "__main__":
# run_convert()
run_reorders()
# run_kernels()
# run_kernels_affin()