-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_experiment.py
219 lines (184 loc) · 9.11 KB
/
run_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
import re
import subprocess
import csv
# Define the base directory containing the graph datasets
BASE_DIR = "/media/cmv6ru/Data/00_GraphDatasets/GBREW"
RESULT_DIR = "bench/results"
# Define the list of graphs and their extensions
graph_extensions = {
"TWTR": "mtx",
"RD": "mtx",
"SLJ1": "mtx",
"CPAT": "mtx",
"CORKT": "mtx",
"SPKC": "mtx",
"WEB01": "mtx",
"GPLUS": "el",
"WIKLE": "el"
}
# Define the list of kernels
kernels = [
{"name": "bc", "trials": 20, "iterations": 10},
{"name": "bfs", "trials": 20, "iterations": 10},
{"name": "cc", "trials": 20, "iterations": 10},
{"name": "cc_sv", "trials": 20, "iterations": 10},
{"name": "pr", "trials": 20, "iterations": 10},
{"name": "pr_spmv", "trials": 20, "iterations": 10},
{"name": "sssp", "trials": 20, "iterations": 10}
]
# Regular expressions for parsing timing data from benchmark outputs
time_patterns = {
"reorder_time": {
"HubClusterDBG": re.compile(r"\bHubClusterDBG\b Map Time:\s*([\d\.]+)"),
"HubCluster": re.compile(r"\bHubCluster\b Map Time:\s*([\d\.]+)"),
"HubSortDBG": re.compile(r"\bHubSortDBG\b Map Time:\s*([\d\.]+)"),
"HubSort": re.compile(r"\bHubSort\b Map Time:\s*([\d\.]+)"),
"LeidenFull": re.compile(r"\bLeidenFullOrder\b Map Time:\s*([\d\.]+)"),
"Leiden": re.compile(r"\bLeidenOrder\b Map Time:\s*([\d\.]+)"),
"Original": re.compile(r"\bOriginal\b Map Time:\s*([\d\.]+)"),
"RabbitOrder": re.compile(r"\bRabbitOrder\b Map Time:\s*([\d\.]+)"),
"Random": re.compile(r"\bRandom\b Map Time:\s*([\d\.]+)"),
"Corder": re.compile(r"\bCOrder\b Map Time:\s*([\d\.]+)"),
"Gorder": re.compile(r"\bGOrder\b Map Time:\s*([\d\.]+)"),
"DBG": re.compile(r"\bDBG\b Map Time:\s*([\d\.]+)"),
"RCM": re.compile(r"\bRCMOrder\b Map Time:\s*([\d\.]+)"),
"Sort": re.compile(r"\bSort\b Map Time:\s*([\d\.]+)")
},
"trial_time": {
"Average": re.compile(r"\bAverage\b Time:\s*([\d\.]+)")
}
}
reorder_option_mapping = {
"Random": "-o1", # this is your baseline
# "Sort": "-o2",
# "HubSort": "-o3",
# "HubCluster": "-o4",
"DBG": "-o5",
# "HubSortDBG": "-o6",
# "HubClusterDBG": "-o7",
"RabbitOrder": "-o8",
"Gorder": "-o9",
"Corder": "-o10",
"RCM": "-o11",
"Leiden": "-o12",
"LeidenFull": "-o8 -o12"
}
def parse_reorder_output(output):
timings = {}
for key, pattern in time_patterns["reorder_time"].items():
match = pattern.search(output)
if match:
timings[key] = float(match.group(1))
return timings
def parse_kernel_output(output):
match = time_patterns["trial_time"]["Average"].search(output)
if match:
return float(match.group(1))
return None
def run_reorders():
print("Starting reorder process...")
results = {}
# Iterate over each graph
for graph, ext in graph_extensions.items():
print(f"Processing graph: {graph}")
# Construct the graph file path
graph_file = os.path.join(BASE_DIR, graph, f"graph.{ext}")
random_graph_file = os.path.join(BASE_DIR, graph, f"graph_1.sg")
first_item = next(iter(reorder_option_mapping.items()))
reorder_name, reorder_option = first_item
# Construct a random graph
print(f"Running converter with reorder {reorder_name} option:{reorder_option}")
print(f"Output file: {random_graph_file}")
make_command = f"make run-converter GRAPH_BENCH='-f {graph_file} -b {random_graph_file}' RUN_PARAMS='{reorder_option}' FLUSH_CACHE=0 PARALLEL=16"
print(f"Executing command: {make_command}")
subprocess.run(make_command, shell=True, check=True, capture_output=True, text=True)
# Check if the graph file exists
if os.path.isfile(graph_file):
print(f"Graph file found: {graph_file}")
results[graph] = {}
# Iterate over each reorder option
for reorder_name, reorder_option in list(reorder_option_mapping.items())[1:]:
if ' ' in reorder_option:
# Handle multiple options
option_numbers = '_'.join([opt.split('o')[1] for opt in reorder_option.split()])
output_file = os.path.join(BASE_DIR, graph, f"graph_{option_numbers}.sg")
else:
# Handle single option
option_number = reorder_option.split('o')[1]
output_file = os.path.join(BASE_DIR, graph, f"graph_{option_number}.sg")
# Print the current stage
print(f"Running converter with reorder {reorder_name} option: {reorder_option}")
print(f"Output file: {output_file}")
# Construct and run the make command
make_command = f"make run-converter GRAPH_BENCH='-f {random_graph_file} -b {output_file}' RUN_PARAMS='{reorder_option}' FLUSH_CACHE=0 PARALLEL=16"
print(f"Executing command: {make_command}")
# Run the command and capture the output
result = subprocess.run(make_command, shell=True, check=True, capture_output=True, text=True)
# Parse the output
timings = parse_reorder_output(result.stdout)
# Record the results
for key, time in timings.items():
if reorder_name in reorder_option_mapping:
results[graph][reorder_name] = time
print(f"Completed conversion for reorder option: {reorder_option}\n")
else:
print(f"Graph file not found: {random_graph_file}")
# Write results to CSV
csv_file = os.path.join(RESULT_DIR, "reorder_results.csv")
with open(csv_file, mode='w', newline='') as file:
writer = csv.writer(file)
header = ["Graph"] + list(reorder_option_mapping.keys())
writer.writerow(header)
for graph, timings in results.items():
row = [graph] + [timings.get(reorder_name, '') for reorder_name in reorder_option_mapping.keys()]
writer.writerow(row)
print("Reorder process completed.")
def run_kernels():
print("Starting kernel execution process...")
kernel_results = {kernel["name"]: {} for kernel in kernels}
# Iterate over each graph
for graph in graph_extensions.keys():
print(f"Processing graph: {graph}")
# Iterate over each reorder option
for reorder_name, reorder_option in reorder_option_mapping.items():
if ' ' in reorder_option:
# Handle multiple options
option_numbers = '_'.join([opt.split('o')[1] for opt in reorder_option.split()])
output_file = os.path.join(BASE_DIR, graph, f"graph_{option_numbers}.sg")
else:
# Handle single option
option_number = reorder_option.split('o')[1]
output_file = os.path.join(BASE_DIR, graph, f"graph_{option_number}.sg")
# Check if the converted graph file exists
if os.path.isfile(output_file):
print(f"Converted graph file found: {output_file}")
# Run kernels on the converted graph file
for kernel in kernels:
kernel_command = f"make run-{kernel['name']} GRAPH_BENCH='-f {output_file}' RUN_PARAMS='-n {kernel['trials']}' FLUSH_CACHE=1 PARALLEL=16"
print(f"Running kernel: {kernel['name']} with {kernel['trials']} trials and {kernel['iterations']} iterations")
print(f"Executing command: {kernel_command}")
result = subprocess.run(kernel_command, shell=True, check=True, capture_output=True, text=True)
# Parse the output
average_time = parse_kernel_output(result.stdout)
if average_time is not None:
if graph not in kernel_results[kernel['name']]:
kernel_results[kernel['name']][graph] = {}
kernel_results[kernel['name']][graph][reorder_name] = average_time
print(f"Completed kernel: {kernel['name']}\n")
else:
print(f"Converted graph file not found: {output_file}")
# Write results to CSV for each kernel
for kernel_name, results in kernel_results.items():
csv_file = os.path.join(RESULT_DIR, f"{kernel_name}_trial_time_results.csv")
with open(csv_file, mode='w', newline='') as file:
writer = csv.writer(file)
header = ["Graph"] + list(reorder_option_mapping.keys())
writer.writerow(header)
for graph, timings in results.items():
row = [graph] + [timings.get(reorder_name, '') for reorder_name in reorder_option_mapping.keys()]
writer.writerow(row)
print("Kernel execution process completed.")
if __name__ == "__main__":
run_reorders()
run_kernels()