在2017年之前,工业界和学术界对NLP文本处理依赖于序列模型Recurrent Neural Network (RNN).
近年来随着深度学习的发展,模型参数数量飞速增长,为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集成本过高,非常困难,特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。最近的研究表明,基于大规模未标注语料库的预训练模型(Pretrained Models, PTM) 能够习得通用的语言表示,将预训练模型Fine-tune到下游任务,能够获得出色的表现。另外,预训练模型能够避免从零开始训练模型。
本示例将展示如何使用PaddleHub Transformer模型(如 ERNIE、BERT、RoBERTa等模型)Module 以动态图方式fine-tune并完成预测任务。
我们以中文情感分类公开数据集ChnSentiCorp为示例数据集,可以运行下面的命令,在训练集(train.tsv)上进行模型训练,并在开发集(dev.tsv)验证。通过如下命令,即可启动训练。
# 设置使用的GPU卡号
export CUDA_VISIBLE_DEVICES=0
python train.py
使用PaddleHub Fine-tune API进行Fine-tune可以分为4个步骤。
import paddlehub as hub
model = hub.Module(name='ernie_tiny', version='2.0.1', task='seq-cls', num_classes=2)
其中,参数:
name
:模型名称,可以选择ernie
,ernie_tiny
,bert-base-cased
,bert-base-chinese
,roberta-wwm-ext
,roberta-wwm-ext-large
等。version
:module版本号task
:fine-tune任务。此处为seq-cls
,表示文本分类任务。num_classes
:表示当前文本分类任务的类别数,根据具体使用的数据集确定,默认为2。
PaddleHub还提供BERT等模型可供选择, 当前支持文本分类任务的模型对应的加载示例如下:
模型名 | PaddleHub Module |
---|---|
ERNIE, Chinese | hub.Module(name='ernie') |
ERNIE tiny, Chinese | hub.Module(name='ernie_tiny') |
ERNIE 2.0 Base, English | hub.Module(name='ernie_v2_eng_base') |
ERNIE 2.0 Large, English | hub.Module(name='ernie_v2_eng_large') |
BERT-Base, English Cased | hub.Module(name='bert-base-cased') |
BERT-Base, English Uncased | hub.Module(name='bert-base-uncased') |
BERT-Large, English Cased | hub.Module(name='bert-large-cased') |
BERT-Large, English Uncased | hub.Module(name='bert-large-uncased') |
BERT-Base, Multilingual Cased | hub.Module(nane='bert-base-multilingual-cased') |
BERT-Base, Multilingual Uncased | hub.Module(nane='bert-base-multilingual-uncased') |
BERT-Base, Chinese | hub.Module(name='bert-base-chinese') |
BERT-wwm, Chinese | hub.Module(name='chinese-bert-wwm') |
BERT-wwm-ext, Chinese | hub.Module(name='chinese-bert-wwm-ext') |
RoBERTa-wwm-ext, Chinese | hub.Module(name='roberta-wwm-ext') |
RoBERTa-wwm-ext-large, Chinese | hub.Module(name='roberta-wwm-ext-large') |
RBT3, Chinese | hub.Module(name='rbt3') |
RBTL3, Chinese | hub.Module(name='rbtl3') |
ELECTRA-Small, English | hub.Module(name='electra-small') |
ELECTRA-Base, English | hub.Module(name='electra-base') |
ELECTRA-Large, English | hub.Module(name='electra-large') |
ELECTRA-Base, Chinese | hub.Module(name='chinese-electra-base') |
ELECTRA-Small, Chinese | hub.Module(name='chinese-electra-small') |
通过以上的一行代码,model
初始化为一个适用于文本分类任务的模型,为ERNIE Tiny的预训练模型后拼接上一个全连接网络(Full Connected)。
以上图片来自于:https://arxiv.org/pdf/1810.04805.pdf
train_dataset = hub.datasets.ChnSentiCorp(
tokenizer=model.get_tokenizer(), max_seq_len=128, mode='train')
dev_dataset = hub.datasets.ChnSentiCorp(
tokenizer=model.get_tokenizer(), max_seq_len=128, mode='dev')
tokenizer
:表示该module所需用到的tokenizer,其将对输入文本完成切词,并转化成module运行所需模型输入格式。mode
:选择数据模式,可选项有train
,test
,val
, 默认为train
。max_seq_len
:ERNIE/BERT模型使用的最大序列长度,若出现显存不足,请适当调低这一参数。
预训练模型ERNIE对中文数据的处理是以字为单位,tokenizer作用为将原始输入文本转化成模型model可以接受的输入数据形式。 PaddleHub 2.0中的各种预训练模型已经内置了相应的tokenizer,可以通过model.get_tokenizer
方法获取。
optimizer = paddle.optimizer.Adam(learning_rate=5e-5, parameters=model.parameters())
trainer = hub.Trainer(model, optimizer, checkpoint_dir='test_ernie_text_cls')
trainer.train(train_dataset, epochs=3, batch_size=32, eval_dataset=dev_dataset)
# 在测试集上评估当前训练模型
trainer.evaluate(test_dataset, batch_size=32)
Paddle2.0-rc提供了多种优化器选择,如SGD
, Adam
, Adamax
等,详细参见策略。
其中Adam
:
learning_rate
: 全局学习率。默认为1e-3;parameters
: 待优化模型参数。
Trainer
主要控制Fine-tune的训练,包含以下可控制的参数:
model
: 被优化模型;optimizer
: 优化器选择;use_vdl
: 是否使用vdl可视化训练过程;checkpoint_dir
: 保存模型参数的地址;compare_metrics
: 保存最优模型的衡量指标;
trainer.train
主要控制具体的训练过程,包含以下可控制的参数:
train_dataset
: 训练时所用的数据集;epochs
: 训练轮数;batch_size
: 训练的批大小,如果使用GPU,请根据实际情况调整batch_size;num_workers
: works的数量,默认为0;eval_dataset
: 验证集;log_interval
: 打印日志的间隔, 单位为执行批训练的次数。save_interval
: 保存模型的间隔频次,单位为执行训练的轮数。
当完成Fine-tune后,Fine-tune过程在验证集上表现最优的模型会被保存在${CHECKPOINT_DIR}/best_model
目录下,其中${CHECKPOINT_DIR}
目录为Fine-tune时所选择的保存checkpoint的目录。
我们以以下数据为待预测数据,使用该模型来进行预测
这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般
怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片
作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。
import paddlehub as hub
data = [
['这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般'],
['怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片'],
['作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。'],
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='ernie_tiny',
version='2.0.1',
task='seq-cls',
load_checkpoint='./test_ernie_text_cls/best_model/model.pdparams',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text[0], results[idx]))
参数配置正确后,请执行脚本python predict.py
, 加载模型具体可参见加载。