-
Notifications
You must be signed in to change notification settings - Fork 3
/
option.py
204 lines (186 loc) · 9.94 KB
/
option.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import argparse
import template
parser = argparse.ArgumentParser(description='EDSR and MDSR')
parser.add_argument('--debug', action='store_true',
help='Enables debug mode')
parser.add_argument('--template', default='.',
help='You can set various templates in option.py')
# Hardware specifications
parser.add_argument('--n_threads', type=int, default=4,
help='number of threads for data loading')
parser.add_argument('--cpu', type=bool, default=False,
help='use cpu only')
parser.add_argument('--n_GPUs', type=int, default=2,
help='number of GPUs')
parser.add_argument('--seed', type=int, default=1,
help='random seed')
parser.add_argument('--pre_train_meta', type=str, default= '.',
help='pre-trained model directory')
parser.add_argument('--pre_train_TA', type=str, default= '.',
help='pre-trained model directory')
parser.add_argument('--pre_train_ST', type=str, default= '.',
help='pre-trained model directory')
parser.add_argument('--is_stage3', action='store_true',
help='set this option to test the model')
parser.add_argument('--temperature', type=float, default=0.15,
help='for konwledge distillation')
# Meta-Learning
parser.add_argument('--task_iter', type=int, default=20,
help='each task iteration times')
parser.add_argument('--test_iter', type=int, default=20,
help='each task iteration times')
parser.add_argument('--meta_batch_size', type=int, default=8,
help='each task iteration times')
parser.add_argument('--task_batch_size', type=int, default=16,
help='each task iteration times')
parser.add_argument('--lr_task', type=float, default=1e-3,
help='learning rate to train the whole network')
# Data specifications
parser.add_argument('--dir_data', type=str, default='D:/LongguangWang/Data',
help='dataset directory')
parser.add_argument('--dir_demo', type=str, default='../test',
help='demo image directory')
parser.add_argument('--data_train', type=str, default='DF2K',
help='train dataset name')
parser.add_argument('--data_test', type=str, default='Set5',
help='test dataset name')
parser.add_argument('--data_range', type=str, default='1-3450/801-810',
help='train/test data range')
parser.add_argument('--ext', type=str, default='sep',
help='dataset file extension')
parser.add_argument('--scale', type=str, default='4',
help='super resolution scale')
parser.add_argument('--patch_size', type=int, default=36,
help='output patch size')
parser.add_argument('--rgb_range', type=int, default=1,
help='maximum value of RGB')
parser.add_argument('--n_colors', type=int, default=3,
help='number of color channels to use')
parser.add_argument('--chop', action='store_true',
help='enable memory-efficient forward')
parser.add_argument('--no_augment', action='store_true',
help='do not use data augmentation')
# Degradation specifications
parser.add_argument('--blur_kernel', type=int, default=21,
help='size of blur kernels')
parser.add_argument('--blur_type', type=str, default='iso_gaussian',
help='blur types (iso_gaussian | aniso_gaussian)')
parser.add_argument('--mode', type=str, default='bicubic',
help='downsampler (bicubic | s-fold)')
parser.add_argument('--noise', type=float, default=0.0,
help='noise level')
## isotropic Gaussian blur
parser.add_argument('--sig_min', type=float, default=0.2,
help='minimum sigma of isotropic Gaussian blurs')
parser.add_argument('--sig_max', type=float, default=4.0,
help='maximum sigma of isotropic Gaussian blurs')
parser.add_argument('--sig', type=float, default=4.0,
help='specific sigma of isotropic Gaussian blurs')
## anisotropic Gaussian blur
parser.add_argument('--lambda_min', type=float, default=0.2,
help='minimum value for the eigenvalue of anisotropic Gaussian blurs')
parser.add_argument('--lambda_max', type=float, default=4.0,
help='maximum value for the eigenvalue of anisotropic Gaussian blurs')
parser.add_argument('--lambda_1', type=float, default=0.2,
help='one eigenvalue of anisotropic Gaussian blurs')
parser.add_argument('--lambda_2', type=float, default=4.0,
help='another eigenvalue of anisotropic Gaussian blurs')
parser.add_argument('--theta', type=float, default=0.0,
help='rotation angle of anisotropic Gaussian blurs [0, 180]')
# Model specifications
parser.add_argument('--model', default='blindsr',
help='model name')
parser.add_argument('--pre_train', type=str, default= '.',
help='pre-trained model directory')
parser.add_argument('--extend', type=str, default='.',
help='pre-trained model directory')
parser.add_argument('--shift_mean', default=True,
help='subtract pixel mean from the input')
parser.add_argument('--dilation', action='store_true',
help='use dilated convolution')
parser.add_argument('--precision', type=str, default='single',
choices=('single', 'half'),
help='FP precision for test (single | half)')
parser.add_argument('--n_resblocks', type=int, default=20,
help='number of residual blocks')
parser.add_argument('--n_feats', type=int, default=64,
help='number of feature maps')
parser.add_argument('--res_scale', type=float, default=1,
help='residual scaling')
# Training specifications
parser.add_argument('--reset', action='store_true',
help='reset the training')
parser.add_argument('--test_every', type=int, default=1000,
help='do test per every N batches')
parser.add_argument('--epochs_encoder', type=int, default=100,
help='number of epochs to train the degradation encoder')
parser.add_argument('--epochs_sr', type=int, default=500,
help='number of epochs to train the whole network')
parser.add_argument('--st_save_epoch', type=int, default=550,
help='number of epochs to save network')
parser.add_argument('--batch_size', type=int, default=32,
help='input batch size for training')
parser.add_argument('--split_batch', type=int, default=1,
help='split the batch into smaller chunks')
parser.add_argument('--self_ensemble', action='store_true',
help='use self-ensemble method for test')
parser.add_argument('--test_only', action='store_true',
help='set this option to test the model')
# Optimization specifications
parser.add_argument('--lr_encoder', type=float, default=1e-3,
help='learning rate to train the degradation encoder')
parser.add_argument('--lr_sr', type=float, default=1e-4,
help='learning rate to train the whole network')
parser.add_argument('--lr_decay_encoder', type=int, default=60,
help='learning rate decay per N epochs')
parser.add_argument('--lr_decay_sr', type=int, default=125,
help='learning rate decay per N epochs')
parser.add_argument('--decay_type', type=str, default='step',
help='learning rate decay type')
parser.add_argument('--gamma_encoder', type=float, default=0.1,
help='learning rate decay factor for step decay')
parser.add_argument('--gamma_sr', type=float, default=0.5,
help='learning rate decay factor for step decay')
parser.add_argument('--optimizer', default='ADAM',
choices=('SGD', 'ADAM', 'RMSprop'),
help='optimizer to use (SGD | ADAM | RMSprop)')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum')
parser.add_argument('--beta1', type=float, default=0.9,
help='ADAM beta1')
parser.add_argument('--beta2', type=float, default=0.999,
help='ADAM beta2')
parser.add_argument('--epsilon', type=float, default=1e-8,
help='ADAM epsilon for numerical stability')
parser.add_argument('--weight_decay', type=float, default=0,
help='weight decay')
parser.add_argument('--start_epoch', type=int, default=0,
help='resume from the snapshot, and the start_epoch')
# Loss specifications
parser.add_argument('--loss', type=str, default='1*L1',
help='loss function configuration')
parser.add_argument('--skip_threshold', type=float, default='1e6',
help='skipping batch that has large error')
# Log specifications
parser.add_argument('--save', type=str, default='blindsr',
help='file name to save')
parser.add_argument('--load', type=str, default='.',
help='file name to load')
parser.add_argument('--resume', type=int, default=0,
help='resume from specific checkpoint')
parser.add_argument('--save_models', action='store_true',
help='save all intermediate models')
parser.add_argument('--print_every', type=int, default=200,
help='how many batches to wait before logging training status')
parser.add_argument('--save_results', default=False,
help='save output results')
args = parser.parse_args()
template.set_template(args)
args.scale = list(map(lambda x: float(x), args.scale.split('+')))
args.data_train = args.data_train.split('+')
args.data_test = args.data_test.split('+')
for arg in vars(args):
if vars(args)[arg] == 'True':
vars(args)[arg] = True
elif vars(args)[arg] == 'False':
vars(args)[arg] = False