-
Notifications
You must be signed in to change notification settings - Fork 438
/
spaceship_generator.py
819 lines (726 loc) · 34.5 KB
/
spaceship_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
#
# spaceship_generator.py
#
# This is a Blender script that uses procedural generation to create
# textured 3D spaceship models. Tested with Blender 2.77a.
#
# michael@spaceduststudios.com
# https://github.com/a1studmuffin/SpaceshipGenerator
#
import sys
import os
import os.path
import bpy
import bmesh
import datetime
from math import sqrt, radians, pi, cos, sin
from mathutils import Vector, Matrix
from random import random, seed, uniform, randint, randrange
from enum import IntEnum
from colorsys import hls_to_rgb
DIR = os.path.dirname(os.path.abspath(__file__))
def resource_path(*path_components):
return os.path.join(DIR, *path_components)
# Deletes all existing spaceships and unused materials from the scene
def reset_scene():
for item in bpy.data.objects:
item.select = item.name.startswith('Spaceship')
bpy.ops.object.delete()
for material in bpy.data.materials:
if not material.users:
bpy.data.materials.remove(material)
for texture in bpy.data.textures:
if not texture.users:
bpy.data.textures.remove(texture)
# Extrudes a face along its normal by translate_forwards units.
# Returns the new face, and optionally fills out extruded_face_list
# with all the additional side faces created from the extrusion.
def extrude_face(bm, face, translate_forwards=0.0, extruded_face_list=None):
new_faces = bmesh.ops.extrude_discrete_faces(bm, faces=[face])['faces']
if extruded_face_list != None:
extruded_face_list += new_faces[:]
new_face = new_faces[0]
bmesh.ops.translate(bm,
vec=new_face.normal * translate_forwards,
verts=new_face.verts)
return new_face
# Similar to extrude_face, except corrigates the geometry to create "ribs".
# Returns the new face.
def ribbed_extrude_face(bm, face, translate_forwards, num_ribs=3, rib_scale=0.9):
translate_forwards_per_rib = translate_forwards / float(num_ribs)
new_face = face
for i in range(num_ribs):
new_face = extrude_face(bm, new_face, translate_forwards_per_rib * 0.25)
new_face = extrude_face(bm, new_face, 0.0)
scale_face(bm, new_face, rib_scale, rib_scale, rib_scale)
new_face = extrude_face(bm, new_face, translate_forwards_per_rib * 0.5)
new_face = extrude_face(bm, new_face, 0.0)
scale_face(bm, new_face, 1 / rib_scale, 1 / rib_scale, 1 / rib_scale)
new_face = extrude_face(bm, new_face, translate_forwards_per_rib * 0.25)
return new_face
# Scales a face in local face space. Ace!
def scale_face(bm, face, scale_x, scale_y, scale_z):
face_space = get_face_matrix(face)
face_space.invert()
bmesh.ops.scale(bm,
vec=Vector((scale_x, scale_y, scale_z)),
space=face_space,
verts=face.verts)
# Returns a rough 4x4 transform matrix for a face (doesn't handle
# distortion/shear) with optional position override.
def get_face_matrix(face, pos=None):
x_axis = (face.verts[1].co - face.verts[0].co).normalized()
z_axis = -face.normal
y_axis = z_axis.cross(x_axis)
if not pos:
pos = face.calc_center_bounds()
# Construct a 4x4 matrix from axes + position:
# http://i.stack.imgur.com/3TnQP.png
mat = Matrix()
mat[0][0] = x_axis.x
mat[1][0] = x_axis.y
mat[2][0] = x_axis.z
mat[3][0] = 0
mat[0][1] = y_axis.x
mat[1][1] = y_axis.y
mat[2][1] = y_axis.z
mat[3][1] = 0
mat[0][2] = z_axis.x
mat[1][2] = z_axis.y
mat[2][2] = z_axis.z
mat[3][2] = 0
mat[0][3] = pos.x
mat[1][3] = pos.y
mat[2][3] = pos.z
mat[3][3] = 1
return mat
# Returns the rough length and width of a quad face.
# Assumes a perfect rectangle, but close enough.
def get_face_width_and_height(face):
if not face.is_valid or len(face.verts[:]) < 4:
return -1, -1
width = (face.verts[0].co - face.verts[1].co).length
height = (face.verts[2].co - face.verts[1].co).length
return width, height
# Returns the rough aspect ratio of a face. Always >= 1.
def get_aspect_ratio(face):
if not face.is_valid:
return 1.0
face_aspect_ratio = max(0.01, face.edges[0].calc_length() / face.edges[1].calc_length())
if face_aspect_ratio < 1.0:
face_aspect_ratio = 1.0 / face_aspect_ratio
return face_aspect_ratio
# Returns true if this face is pointing behind the ship
def is_rear_face(face):
return face.normal.x < -0.95
# Given a face, splits it into a uniform grid and extrudes each grid face
# out and back in again, making an exhaust shape.
def add_exhaust_to_face(bm, face):
if not face.is_valid:
return
# The more square the face is, the more grid divisions it might have
num_cuts = randint(1, int(4 - get_aspect_ratio(face)))
result = bmesh.ops.subdivide_edges(bm,
edges=face.edges[:],
cuts=num_cuts,
fractal=0.02,
use_grid_fill=True)
exhaust_length = uniform(0.1, 0.2)
scale_outer = 1 / uniform(1.3, 1.6)
scale_inner = 1 / uniform(1.05, 1.1)
for face in result['geom']:
if isinstance(face, bmesh.types.BMFace):
if is_rear_face(face):
face.material_index = Material.hull_dark
face = extrude_face(bm, face, exhaust_length)
scale_face(bm, face, scale_outer, scale_outer, scale_outer)
extruded_face_list = []
face = extrude_face(bm, face, -exhaust_length * 0.9, extruded_face_list)
for extruded_face in extruded_face_list:
extruded_face.material_index = Material.exhaust_burn
scale_face(bm, face, scale_inner, scale_inner, scale_inner)
# Given a face, splits it up into a smaller uniform grid and extrudes each grid cell.
def add_grid_to_face(bm, face):
if not face.is_valid:
return
result = bmesh.ops.subdivide_edges(bm,
edges=face.edges[:],
cuts=randint(2, 4),
fractal=0.02,
use_grid_fill=True,
use_single_edge=False)
grid_length = uniform(0.025, 0.15)
scale = 0.8
for face in result['geom']:
if isinstance(face, bmesh.types.BMFace):
material_index = Material.hull_lights if random() > 0.5 else Material.hull
extruded_face_list = []
face = extrude_face(bm, face, grid_length, extruded_face_list)
for extruded_face in extruded_face_list:
if abs(face.normal.z) < 0.707: # side face
extruded_face.material_index = material_index
scale_face(bm, face, scale, scale, scale)
# Given a face, adds some cylinders along it in a grid pattern.
def add_cylinders_to_face(bm, face):
if not face.is_valid or len(face.verts[:]) < 4:
return
horizontal_step = randint(1, 3)
vertical_step = randint(1, 3)
num_segments = randint(6, 12)
face_width, face_height = get_face_width_and_height(face)
cylinder_depth = 1.3 * min(face_width / (horizontal_step + 2),
face_height / (vertical_step + 2))
cylinder_size = cylinder_depth * 0.5
for h in range(horizontal_step):
top = face.verts[0].co.lerp(
face.verts[1].co, (h + 1) / float(horizontal_step + 1))
bottom = face.verts[3].co.lerp(
face.verts[2].co, (h + 1) / float(horizontal_step + 1))
for v in range(vertical_step):
pos = top.lerp(bottom, (v + 1) / float(vertical_step + 1))
cylinder_matrix = get_face_matrix(face, pos) @ \
Matrix.Rotation(radians(90), 3, 'X').to_4x4()
bmesh.ops.create_cone(bm,
cap_ends=True,
cap_tris=False,
segments=num_segments,
diameter1=cylinder_size,
diameter2=cylinder_size,
depth=cylinder_depth,
matrix=cylinder_matrix)
# Given a face, adds some weapon turrets to it in a grid pattern.
# Each turret will have a random orientation.
def add_weapons_to_face(bm, face):
if not face.is_valid or len(face.verts[:]) < 4:
return
horizontal_step = randint(1, 2)
vertical_step = randint(1, 2)
num_segments = 16
face_width, face_height = get_face_width_and_height(face)
weapon_size = 0.5 * min(face_width / (horizontal_step + 2),
face_height / (vertical_step + 2))
weapon_depth = weapon_size * 0.2
for h in range(horizontal_step):
top = face.verts[0].co.lerp(
face.verts[1].co, (h + 1) / float(horizontal_step + 1))
bottom = face.verts[3].co.lerp(
face.verts[2].co, (h + 1) / float(horizontal_step + 1))
for v in range(vertical_step):
pos = top.lerp(bottom, (v + 1) / float(vertical_step + 1))
face_matrix = get_face_matrix(face, pos + face.normal * weapon_depth * 0.5) @ \
Matrix.Rotation(radians(uniform(0, 90)), 3, 'Z').to_4x4()
# Turret foundation
bmesh.ops.create_cone(bm,
cap_ends=True,
cap_tris=False,
segments=num_segments,
diameter1=weapon_size * 0.9,
diameter2=weapon_size,
depth=weapon_depth,
matrix=face_matrix)
# Turret left guard
left_guard_mat = face_matrix @ \
Matrix.Rotation(radians(90), 3, 'Y').to_4x4() @ \
Matrix.Translation(Vector((0, 0, weapon_size * 0.6))).to_4x4()
bmesh.ops.create_cone(bm,
cap_ends=True,
cap_tris=False,
segments=num_segments,
diameter1=weapon_size * 0.6,
diameter2=weapon_size * 0.5,
depth=weapon_depth * 2,
matrix=left_guard_mat)
# Turret right guard
right_guard_mat = face_matrix @ \
Matrix.Rotation(radians(90), 3, 'Y').to_4x4() @ \
Matrix.Translation(Vector((0, 0, weapon_size * -0.6))).to_4x4()
bmesh.ops.create_cone(bm,
cap_ends=True,
cap_tris=False,
segments=num_segments,
diameter1=weapon_size * 0.5,
diameter2=weapon_size * 0.6,
depth=weapon_depth * 2,
matrix=right_guard_mat)
# Turret housing
upward_angle = uniform(0, 45)
turret_house_mat = face_matrix @ \
Matrix.Rotation(radians(upward_angle), 3, 'X').to_4x4() @ \
Matrix.Translation(Vector((0, weapon_size * -0.4, 0))).to_4x4()
bmesh.ops.create_cone(bm,
cap_ends=True,
cap_tris=False,
segments=8,
diameter1=weapon_size * 0.4,
diameter2=weapon_size * 0.4,
depth=weapon_depth * 5,
matrix=turret_house_mat)
# Turret barrels L + R
bmesh.ops.create_cone(bm,
cap_ends=True,
cap_tris=False,
segments=8,
diameter1=weapon_size * 0.1,
diameter2=weapon_size * 0.1,
depth=weapon_depth * 6,
matrix=turret_house_mat @ \
Matrix.Translation(Vector((weapon_size * 0.2, 0, -weapon_size))).to_4x4())
bmesh.ops.create_cone(bm,
cap_ends=True,
cap_tris=False,
segments=8,
diameter1=weapon_size * 0.1,
diameter2=weapon_size * 0.1,
depth=weapon_depth * 6,
matrix=turret_house_mat @ \
Matrix.Translation(Vector((weapon_size * -0.2, 0, -weapon_size))).to_4x4())
# Given a face, adds a sphere on the surface, partially inset.
def add_sphere_to_face(bm, face):
if not face.is_valid:
return
face_width, face_height = get_face_width_and_height(face)
sphere_size = uniform(0.4, 1.0) * min(face_width, face_height)
sphere_matrix = get_face_matrix(face,
face.calc_center_bounds() - face.normal * \
uniform(0, sphere_size * 0.5))
result = bmesh.ops.create_icosphere(bm,
subdivisions=3,
diameter=sphere_size,
matrix=sphere_matrix)
for vert in result['verts']:
for face in vert.link_faces:
face.material_index = Material.hull
# Given a face, adds some pointy intimidating antennas.
def add_surface_antenna_to_face(bm, face):
if not face.is_valid or len(face.verts[:]) < 4:
return
horizontal_step = randint(4, 10)
vertical_step = randint(4, 10)
for h in range(horizontal_step):
top = face.verts[0].co.lerp(
face.verts[1].co, (h + 1) / float(horizontal_step + 1))
bottom = face.verts[3].co.lerp(
face.verts[2].co, (h + 1) / float(horizontal_step + 1))
for v in range(vertical_step):
if random() > 0.9:
pos = top.lerp(bottom, (v + 1) / float(vertical_step + 1))
face_size = sqrt(face.calc_area())
depth = uniform(0.1, 1.5) * face_size
depth_short = depth * uniform(0.02, 0.15)
base_diameter = uniform(0.005, 0.05)
material_index = Material.hull if random() > 0.5 else Material.hull_dark
# Spire
num_segments = uniform(3, 6)
result = bmesh.ops.create_cone(bm,
cap_ends=False,
cap_tris=False,
segments=num_segments,
diameter1=0,
diameter2=base_diameter,
depth=depth,
matrix=get_face_matrix(face, pos + face.normal * depth * 0.5))
for vert in result['verts']:
for vert_face in vert.link_faces:
vert_face.material_index = material_index
# Base
result = bmesh.ops.create_cone(bm,
cap_ends=True,
cap_tris=False,
segments=num_segments,
diameter1=base_diameter * uniform(1, 1.5),
diameter2=base_diameter * uniform(1.5, 2),
depth=depth_short,
matrix=get_face_matrix(face, pos + face.normal * depth_short * 0.45))
for vert in result['verts']:
for vert_face in vert.link_faces:
vert_face.material_index = material_index
# Given a face, adds a glowing "landing pad" style disc.
def add_disc_to_face(bm, face):
if not face.is_valid:
return
face_width, face_height = get_face_width_and_height(face)
depth = 0.125 * min(face_width, face_height)
bmesh.ops.create_cone(bm,
cap_ends=True,
cap_tris=False,
segments=32,
diameter1=depth * 3,
diameter2=depth * 4,
depth=depth,
matrix=get_face_matrix(face, face.calc_center_bounds() + face.normal * depth * 0.5))
result = bmesh.ops.create_cone(bm,
cap_ends=False,
cap_tris=False,
segments=32,
diameter1=depth * 1.25,
diameter2=depth * 2.25,
depth=0.0,
matrix=get_face_matrix(face, face.calc_center_bounds() + face.normal * depth * 1.05))
for vert in result['verts']:
for face in vert.link_faces:
face.material_index = Material.glow_disc
class Material(IntEnum):
hull = 0 # Plain spaceship hull
hull_lights = 1 # Spaceship hull with emissive windows
hull_dark = 2 # Plain Spaceship hull, darkened
exhaust_burn = 3 # Emissive engine burn material
glow_disc = 4 # Emissive landing pad disc material
# Returns shader node
def getShaderNode(mat):
ntree = mat.node_tree
node_out = ntree.get_output_node('EEVEE')
shader_node = node_out.inputs['Surface'].links[0].from_node
return shader_node
def getShaderInput(mat, name):
shaderNode = getShaderNode(mat)
return shaderNode.inputs[name]
# Adds a hull normal map texture slot to a material.
def add_hull_normal_map(mat, hull_normal_map):
ntree = mat.node_tree
shader = getShaderNode(mat)
links = ntree.links
teximage_node = ntree.nodes.new('ShaderNodeTexImage')
teximage_node.image = hull_normal_map
teximage_node.image.colorspace_settings.name = 'Raw'
teximage_node.projection ='BOX'
tex_coords_node = ntree.nodes.new('ShaderNodeTexCoord')
links.new(tex_coords_node.outputs['Object'], teximage_node.inputs['Vector'])
normalMap_node = ntree.nodes.new('ShaderNodeNormalMap')
links.new(teximage_node.outputs[0], normalMap_node.inputs['Color'])
links.new(normalMap_node.outputs['Normal'], shader.inputs['Normal'])
return tex_coords_node
# Sets some basic properties for a hull material.
def set_hull_mat_basics(mat, color, hull_normal_map):
shader_node = getShaderNode(mat)
shader_node.inputs["Specular"].default_value = 0.1
shader_node.inputs["Base Color"].default_value = color
return add_hull_normal_map(mat, hull_normal_map)
# Creates all our materials and returns them as a list.
def create_materials():
ret = []
for material in Material:
mat = bpy.data.materials.new(name=material.name)
mat.use_nodes = True
ret.append(mat)
# Choose a base color for the spaceship hull
hull_base_color = hls_to_rgb(
random(), uniform(0.05, 0.5), uniform(0, 0.25))
hull_base_color = (hull_base_color[0], hull_base_color[1], hull_base_color[2], 1.0)
# Load up the hull normal map
hull_normal_map = bpy.data.images.load(resource_path('textures', 'hull_normal.png'), check_existing=True)
# Build the hull texture
mat = ret[Material.hull]
set_hull_mat_basics(mat, hull_base_color, hull_normal_map)
# Build the hull_lights texture
mat = ret[Material.hull_lights]
tex_coords_node = set_hull_mat_basics(mat, hull_base_color, hull_normal_map)
ntree = mat.node_tree
shader_node = getShaderNode(mat)
links = ntree.links
# Add a diffuse layer that sets the window color
hull_lights_diffuse_map = bpy.data.images.load(resource_path('textures', 'hull_lights_diffuse.png'), check_existing=True)
teximage_diff_node = ntree.nodes.new('ShaderNodeTexImage')
teximage_diff_node.image = hull_lights_diffuse_map
teximage_diff_node.projection ='BOX'
links.new(tex_coords_node.outputs['Object'], teximage_diff_node.inputs['Vector'])
RGB_node = ntree.nodes.new('ShaderNodeRGB')
RGB_node.outputs[0].default_value = hull_base_color
mix_node = ntree.nodes.new('ShaderNodeMixRGB')
links.new(RGB_node.outputs[0], mix_node.inputs[1])
links.new(teximage_diff_node.outputs[0], mix_node.inputs[2])
links.new(teximage_diff_node.outputs[1], mix_node.inputs[0])
links.new(mix_node.outputs[0], shader_node.inputs["Base Color"])
# Add an emissive layer that lights up the windows
hull_lights_emessive_map = bpy.data.images.load(resource_path('textures', 'hull_lights_emit.png'), check_existing=True)
teximage_emit_node = ntree.nodes.new('ShaderNodeTexImage')
teximage_emit_node.image = hull_lights_emessive_map
teximage_emit_node.projection ='BOX'
links.new(tex_coords_node.outputs['Object'], teximage_emit_node.inputs['Vector'])
links.new(teximage_emit_node.outputs[0], shader_node.inputs["Emission"])
# Build the hull_dark texture
mat = ret[Material.hull_dark]
set_hull_mat_basics(mat, [0.3 * x for x in hull_base_color], hull_normal_map)
# Choose a glow color for the exhaust + glow discs
glow_color = hls_to_rgb(random(), uniform(0.5, 1), 1)
glow_color = (glow_color[0], glow_color[1], glow_color[2], 1.0)
# # Build the exhaust_burn texture
mat = ret[Material.exhaust_burn]
shader_node = getShaderNode(mat)
shader_node.inputs["Emission"].default_value = glow_color
# # Build the glow_disc texture
mat = ret[Material.glow_disc]
shader_node = getShaderNode(mat)
shader_node.inputs["Emission"].default_value = glow_color
return ret
# Generates a textured spaceship mesh and returns the object.
# Just uses global cube texture coordinates rather than generating UVs.
# Takes an optional random seed value to generate a specific spaceship.
# Allows overriding of some parameters that affect generation.
def generate_spaceship(random_seed='',
num_hull_segments_min=3,
num_hull_segments_max=6,
create_asymmetry_segments=True,
num_asymmetry_segments_min=1,
num_asymmetry_segments_max=5,
create_face_detail=True,
allow_horizontal_symmetry=True,
allow_vertical_symmetry=False,
apply_bevel_modifier=True,
assign_materials=True):
if random_seed:
seed(random_seed)
# Let's start with a unit BMesh cube scaled randomly
bm = bmesh.new()
bmesh.ops.create_cube(bm, size=1)
scale_vector = Vector(
(uniform(0.75, 2.0), uniform(0.75, 2.0), uniform(0.75, 2.0)))
bmesh.ops.scale(bm, vec=scale_vector, verts=bm.verts)
# Extrude out the hull along the X axis, adding some semi-random perturbations
for face in bm.faces[:]:
if abs(face.normal.x) > 0.5:
hull_segment_length = uniform(0.3, 1)
num_hull_segments = randrange(num_hull_segments_min, num_hull_segments_max)
hull_segment_range = range(num_hull_segments)
for i in hull_segment_range:
is_last_hull_segment = i == hull_segment_range[-1]
val = random()
if val > 0.1:
# Most of the time, extrude out the face with some random deviations
face = extrude_face(bm, face, hull_segment_length)
if random() > 0.75:
face = extrude_face(
bm, face, hull_segment_length * 0.25)
# Maybe apply some scaling
if random() > 0.5:
sy = uniform(1.2, 1.5)
sz = uniform(1.2, 1.5)
if is_last_hull_segment or random() > 0.5:
sy = 1 / sy
sz = 1 / sz
scale_face(bm, face, 1, sy, sz)
# Maybe apply some sideways translation
if random() > 0.5:
sideways_translation = Vector(
(0, 0, uniform(0.1, 0.4) * scale_vector.z * hull_segment_length))
if random() > 0.5:
sideways_translation = -sideways_translation
bmesh.ops.translate(bm,
vec=sideways_translation,
verts=face.verts)
# Maybe add some rotation around Y axis
if random() > 0.5:
angle = 5
if random() > 0.5:
angle = -angle
bmesh.ops.rotate(bm,
verts=face.verts,
cent=(0, 0, 0),
matrix=Matrix.Rotation(radians(angle), 3, 'Y'))
else:
# Rarely, create a ribbed section of the hull
rib_scale = uniform(0.75, 0.95)
face = ribbed_extrude_face(
bm, face, hull_segment_length, randint(2, 4), rib_scale)
# Add some large asymmetrical sections of the hull that stick out
if create_asymmetry_segments:
for face in bm.faces[:]:
# Skip any long thin faces as it'll probably look stupid
if get_aspect_ratio(face) > 4:
continue
if random() > 0.85:
hull_piece_length = uniform(0.1, 0.4)
for i in range(randrange(num_asymmetry_segments_min, num_asymmetry_segments_max)):
face = extrude_face(bm, face, hull_piece_length)
# Maybe apply some scaling
if random() > 0.25:
s = 1 / uniform(1.1, 1.5)
scale_face(bm, face, s, s, s)
# Now the basic hull shape is built, let's categorize + add detail to all the faces
if create_face_detail:
engine_faces = []
grid_faces = []
antenna_faces = []
weapon_faces = []
sphere_faces = []
disc_faces = []
cylinder_faces = []
for face in bm.faces[:]:
# Skip any long thin faces as it'll probably look stupid
if get_aspect_ratio(face) > 3:
continue
# Spin the wheel! Let's categorize + assign some materials
val = random()
if is_rear_face(face): # rear face
if not engine_faces or val > 0.75:
engine_faces.append(face)
elif val > 0.5:
cylinder_faces.append(face)
elif val > 0.25:
grid_faces.append(face)
else:
face.material_index = Material.hull_lights
elif face.normal.x > 0.9: # front face
if face.normal.dot(face.calc_center_bounds()) > 0 and val > 0.7:
antenna_faces.append(face) # front facing antenna
face.material_index = Material.hull_lights
elif val > 0.4:
grid_faces.append(face)
else:
face.material_index = Material.hull_lights
elif face.normal.z > 0.9: # top face
if face.normal.dot(face.calc_center_bounds()) > 0 and val > 0.7:
antenna_faces.append(face) # top facing antenna
elif val > 0.6:
grid_faces.append(face)
elif val > 0.3:
cylinder_faces.append(face)
elif face.normal.z < -0.9: # bottom face
if val > 0.75:
disc_faces.append(face)
elif val > 0.5:
grid_faces.append(face)
elif val > 0.25:
weapon_faces.append(face)
elif abs(face.normal.y) > 0.9: # side face
if not weapon_faces or val > 0.75:
weapon_faces.append(face)
elif val > 0.6:
grid_faces.append(face)
elif val > 0.4:
sphere_faces.append(face)
else:
face.material_index = Material.hull_lights
# Now we've categorized, let's actually add the detail
for face in engine_faces:
add_exhaust_to_face(bm, face)
for face in grid_faces:
add_grid_to_face(bm, face)
for face in antenna_faces:
add_surface_antenna_to_face(bm, face)
for face in weapon_faces:
add_weapons_to_face(bm, face)
for face in sphere_faces:
add_sphere_to_face(bm, face)
for face in disc_faces:
add_disc_to_face(bm, face)
for face in cylinder_faces:
add_cylinders_to_face(bm, face)
# Apply horizontal symmetry sometimes
if allow_horizontal_symmetry and random() > 0.5:
bmesh.ops.symmetrize(bm, input=bm.verts[:] + bm.edges[:] + bm.faces[:], direction="Y")
# Apply vertical symmetry sometimes - this can cause spaceship "islands", so disabled by default
if allow_vertical_symmetry and random() > 0.5:
bmesh.ops.symmetrize(bm, input=bm.verts[:] + bm.edges[:] + bm.faces[:], direction="Z")
# Finish up, write the bmesh into a new mesh
me = bpy.data.meshes.new('Mesh')
bm.to_mesh(me)
bm.free()
# Add the mesh to the scene
scene = bpy.context.scene
obj = bpy.data.objects.new('Spaceship', me)
# scene.objects.link(obj)
scene.collection.objects.link(obj)
# Select and make active
bpy.context.view_layer.objects.active = obj
obj.select_set(True)
# scene.objects.active = obj
# obj.select = True
# Recenter the object to its center of mass
bpy.ops.object.origin_set(type='ORIGIN_CENTER_OF_MASS')
ob = bpy.context.object
ob.location = (0, 0, 0)
# Add a fairly broad bevel modifier to angularize shape
if apply_bevel_modifier:
bevel_modifier = ob.modifiers.new('Bevel', 'BEVEL')
bevel_modifier.width = uniform(5, 20)
bevel_modifier.offset_type = 'PERCENT'
bevel_modifier.segments = 2
bevel_modifier.profile = 0.25
bevel_modifier.limit_method = 'NONE'
# Add materials to the spaceship
me = ob.data
materials = create_materials()
# materials = []
for mat in materials:
if assign_materials:
me.materials.append(mat)
else:
me.materials.append(bpy.data.materials.new(name="Material"))
return obj
if __name__ == "__main__":
# When true, this script will generate a single spaceship in the scene.
# When false, this script will render multiple movie frames showcasing lots of ships.
generate_single_spaceship = True
if generate_single_spaceship:
# Reset the scene, generate a single spaceship and focus on it
reset_scene()
customseed = '' # add anything here to generate the same spaceship
obj = generate_spaceship(customseed)
# View the selected object in all views
for area in bpy.context.screen.areas:
if area.type == 'VIEW_3D':
ctx = bpy.context.copy()
ctx['area'] = area
ctx['region'] = area.regions[-1]
bpy.ops.view3d.view_selected(ctx)
else:
# Export a movie showcasing many different kinds of ships
# Settings
output_path = '' # leave empty to use script folder
total_movie_duration = 16
total_spaceship_duration = 1
yaw_rate = 45 # degrees/sec
yaw_offset = 220 # degrees/sec
camera_pole_rate = 1
camera_pole_pitch_min = 15 # degrees
camera_pole_pitch_max = 30 # degrees
camera_pole_pitch_offset = 0 # degrees
camera_pole_length = 10
camera_refocus_object_every_frame = False
fov = 60 # degrees
fps = 30
res_x = 1920
res_y = 1080
# Batch render the movie frames
inv_fps = 1/float(fps)
movie_duration = 0
spaceship_duration = total_spaceship_duration
scene = bpy.data.scenes["Scene"]
scene.render.resolution_x = res_x
scene.render.resolution_y = res_y
scene.camera.rotation_mode = 'XYZ'
scene.camera.data.angle = radians(fov)
frame = 0
timestamp = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
while movie_duration < total_movie_duration:
movie_duration += inv_fps
spaceship_duration += inv_fps
if spaceship_duration >= total_spaceship_duration:
spaceship_duration -= total_spaceship_duration
# Generate a new spaceship
reset_scene()
obj = generate_spaceship()
# look for a mirror plane in the scene, and position it just underneath the ship if found
lowest_z = centre = min((Vector(b).z for b in obj.bound_box))
plane_obj = bpy.data.objects['Plane'] if 'Plane' in bpy.data.objects else None
if plane_obj:
plane_obj.location.z = lowest_z - 0.3
# Position and orient the camera
rad = radians(yaw_offset + (yaw_rate * movie_duration))
camera_pole_pitch_lerp = 0.5 * (1 + cos(camera_pole_rate * movie_duration)) # 0-1
camera_pole_pitch = camera_pole_pitch_max * camera_pole_pitch_lerp + \
camera_pole_pitch_min * (1 - camera_pole_pitch_lerp)
scene.camera.rotation_euler = (radians(90 - camera_pole_pitch + camera_pole_pitch_offset), 0, rad)
scene.camera.location = (sin(rad) * camera_pole_length,
cos(rad) * -camera_pole_length,
sin(radians(camera_pole_pitch))*camera_pole_length)
if camera_refocus_object_every_frame:
bpy.ops.view3d.camera_to_view_selected()
# Render the scene to disk
script_path = bpy.context.space_data.text.filepath if bpy.context.space_data else __file__
folder = output_path if output_path else os.path.split(os.path.realpath(script_path))[0]
filename = os.path.join('renders', timestamp, timestamp + '_' + str(frame).zfill(5) + '.png')
bpy.data.scenes['Scene'].render.filepath = os.path.join(folder, filename)
print('Rendering frame ' + str(frame) + '...')
bpy.ops.render.render(write_still=True)
frame += 1