forked from advboxes/AdvBox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tools.py
105 lines (87 loc) · 3.69 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# coding=utf-8
from __future__ import division
from __future__ import print_function
from builtins import object
from past.utils import old_div
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import re
#参考:https://github.com/duoergun0729/adversarial_examples/blob/master/code/tools.py
def show_images_diff(original_img, original_label, adversarial_img, adversarial_label):
plt.figure()
plt.subplot(131)
plt.title('Original')
plt.imshow(original_img)
plt.axis('off')
plt.subplot(132)
plt.title('Adversarial')
plt.imshow(adversarial_img)
plt.axis('off')
plt.subplot(133)
plt.title('Adversarial-Original')
difference = adversarial_img - original_img
l0 = np.where(difference != 0)[0].shape[0]
l2 = np.linalg.norm(difference)
# print(difference)
print("l0={} l2={}".format(l0, l2))
# (-1,1) -> (0,1)
difference = old_div(difference, abs(difference).max()) / 2.0 + 0.5
plt.imshow(difference, cmap=plt.cm.gray)
plt.axis('off')
plt.tight_layout()
plt.show()
# 把id转换成可读字符串
# 参考:https://github.com/tensorflow/models/blob/1af55e018eebce03fb61bba9959a04672536107d/tutorials/image/imagenet/classify_image.py
class NodeLookup(object):
"""Converts integer node ID's to human readable labels."""
def __init__(self,
label_lookup_path=None,
uid_lookup_path=None):
if not label_lookup_path:
label_lookup_path = 'models/imagenet_2012_challenge_label_map_proto.pbtxt'
if not uid_lookup_path:
uid_lookup_path = 'models/imagenet_synset_to_human_label_map.txt'
self.node_lookup = self.load(label_lookup_path, uid_lookup_path)
def load(self, label_lookup_path, uid_lookup_path):
"""Loads a human readable English name for each softmax node.
Args:
label_lookup_path: string UID to integer node ID.
uid_lookup_path: string UID to human-readable string.
Returns:
dict from integer node ID to human-readable string.
"""
if not tf.gfile.Exists(uid_lookup_path):
tf.logging.fatal('File does not exist %s', uid_lookup_path)
if not tf.gfile.Exists(label_lookup_path):
tf.logging.fatal('File does not exist %s', label_lookup_path)
# Loads mapping from string UID to human-readable string
proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
uid_to_human = {}
p = re.compile(r'[n\d]*[ \S,]*')
for line in proto_as_ascii_lines:
parsed_items = p.findall(line)
uid = parsed_items[0]
human_string = parsed_items[2]
uid_to_human[uid] = human_string
# Loads mapping from string UID to integer node ID.
node_id_to_uid = {}
proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
for line in proto_as_ascii:
if line.startswith(' target_class:'):
target_class = int(line.split(': ')[1])
if line.startswith(' target_class_string:'):
target_class_string = line.split(': ')[1]
node_id_to_uid[target_class] = target_class_string[1:-2]
# Loads the final mapping of integer node ID to human-readable string
node_id_to_name = {}
for key, val in list(node_id_to_uid.items()):
if val not in uid_to_human:
tf.logging.fatal('Failed to locate: %s', val)
name = uid_to_human[val]
node_id_to_name[key] = name
return node_id_to_name
def id_to_string(self, node_id):
if node_id not in self.node_lookup:
return ''
return self.node_lookup[node_id]