-
Notifications
You must be signed in to change notification settings - Fork 0
/
dyn_psds.py
526 lines (468 loc) · 20.1 KB
/
dyn_psds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
import numpy as np
from astropy.table import Table, Column
from astropy.io import fits
import scipy.fftpack as fftpack
# from scipy.stats import binned_statistic
import os
import gc
from datetime import datetime
import subprocess
import matplotlib.pyplot as plt
import matplotlib.font_manager as font_manager
from matplotlib.ticker import MultipleLocator
from matplotlib.ticker import ScalarFormatter, NullFormatter
import matplotlib.colors as colors
from xcor_tools_nicer import make_binned_lc, make_1Dlightcurve, find_nearest, geom_rb
__author__ = "Abigail Stevens <abigailstev@gmail.com>"
__year__ = "2018-2021"
class SegQPO(object):
"""
Generic QPO class. Used for each segment.
"""
def __init__(self, lc_seg):
## Computing Fourier transform
fft_seg, self.rate_seg = self._fft(lc_seg)
## Computing PSD
self.psd_seg = self._power(fft_seg).real
## Check values
assert np.isfinite(self.psd_seg).any(), "psd_seg has infinite value(s)."
assert not np.isnan(self.psd_seg).any(), "psd_seg has NaN value(s)."
assert np.isfinite(self.rate_seg), \
"rate_seg has infinite value(s)."
assert not np.isnan(self.rate_seg), \
"rate_seg has NaN value(s)."
def _fft(self, lc):
"""
Subtract the mean from a light curve and take the Fourier transform of
the mean-subtracted light curve. Assumes that the time bins are along
axis=0 and that the light curve is in units of photon counts per second
(count rate).
"""
means = np.mean(lc, axis=0)
# print("Shape means: "+str(np.shape(means)))
# print("Shape lc: "+str(np.shape(lc)))
if len(np.shape(lc)) == 2:
lc_sub_mean = lc - means[np.newaxis, :]
elif len(np.shape(lc)) == 1:
lc_sub_mean = lc - means
else:
print(
"WARNING: Light curve array does not have expected dimensions. "
"Do not assume the mean count rate was subtracted correctly "
"before FFT.")
lc_sub_mean = lc - means
return fftpack.fft(lc_sub_mean, axis=0), means
def _power(self, fft):
"""
Take the power spectrum of a Fourier transform.
Tested in trying_multiprocessing.ipynb, and this is faster than
multiprocessing with mapping or joblib Parallel.
"""
return np.multiply(fft, np.conj(fft))
def each_file(out_file_base, obj_name, in_file, gti_file, n_bins, dt, df,
n_seconds, band_le, band_he, nyquist, rebin_by):
"""
:param out_file:
:param obj_name:
:param in_file:
:param gti_file:
:param n_seg:
:param n_bins:
:param dt:
:param df:
:param n_seconds:
:param band_le:
:param band_he:
:param nyquist:
:return:
"""
psd = np.zeros((n_bins, 1))
psds_per_gti = np.zeros((n_bins, 1))
rate = np.asarray([])
rates_per_gti = np.asarray([])
n_seg = 0
n_gti = 0
first_start_time = 0
past_first_start_time = False
try:
fits_hdu = fits.open(in_file, memmap=True)
time = fits_hdu['EVENTS'].data.field('TIME') ## ext 1
energy = fits_hdu['EVENTS'].data.field('PI')
det = fits_hdu['EVENTS'].data.field('DET_ID')
if gti_file:
gti_tab = Table.read(gti_file)
gti_starttimes = gti_tab['START']
gti_stoptimes = gti_tab['STOP']
else:
gti_starttimes = fits_hdu['GTI'].data.field('START') ## ext 2
gti_stoptimes = fits_hdu['GTI'].data.field('STOP')
fits_hdu.close()
except IOError:
print("\tERROR: File does not exist: %s" % in_file)
return n_seg, 0, 0, 0, [0]
if len(time) > 0:
start_time = time[0]
final_time = time[-1]
print("Number of GTIs in this file: %d" % len(gti_starttimes))
if not past_first_start_time:
first_start_time = start_time
## Removing the damaged FPMs, 11, 20, 22, and 60, and
## the 'bad' FPMs, 14, 34, and 54
badFPM_mask = (det != 11) & (det != 14) & (det != 20) & \
(det != 22) & (det != 34) & (det != 54) & \
(det != 60)
time = time[badFPM_mask]
energy = energy[badFPM_mask]
det = det[badFPM_mask]
n_events = len(time)
print("Time in file: %.2f" % (final_time - start_time))
print("Number of events in file: %d" % n_events)
for (start_gti, stop_gti) in zip(gti_starttimes, gti_stoptimes):
if start_time <= start_gti:
start_time = start_gti
end_time = start_time + n_seconds
## Mask out the events that are before the 1st good start time
dont_want = time < start_time
time = time[~dont_want]
energy = energy[~dont_want]
det = det[~dont_want]
psd_gti = np.zeros(n_bins)
segs_per_gti = 0
rate_gti = 0
if (stop_gti - start_gti) > float(n_seconds):
############################
## Looping through segments
############################
while end_time <= stop_gti and end_time <= final_time:
## Getting all the events that belong to this time
## segment
seg_mask = time < end_time
time_seg = time[seg_mask]
energy_seg = energy[seg_mask]
det_seg = det[seg_mask]
## All MPUs, energy range
band_mask = (energy_seg >= int(band_le * 100)) & \
(energy_seg <= int(band_he * 100))
time_band = time_seg[band_mask]
## Keep the stuff that isn't in this segment for next
## time
time = time[~seg_mask]
energy = energy[~seg_mask]
det = det[~seg_mask]
## Making populated LC
lc_band = make_1Dlightcurve(np.asarray(time_band),
n_bins,
start_time, end_time)
thing = SegQPO(lc_band)
del lc_band
rate = np.append(rate, thing.rate_seg)
psd = np.append(psd, thing.psd_seg[:, np.newaxis], axis=1)
psd_gti += thing.psd_seg
rate_gti += thing.rate_seg
if debug:
print(np.shape(psd))
del thing
## Increment for next segment
n_seg += 1
segs_per_gti += 1
start_time = end_time
end_time = start_time + n_seconds
if n_seg % 50 == 0 and n_seg != 0:
print("\t%d" % n_seg)
gc.collect()
if debug and n_seg >= 5:
break
## Done with a GTI, just doing this for ones with
## events in the GTI
if debug:
print("Segs per gti: %d" % segs_per_gti)
if segs_per_gti == 0:
psd_gti = np.zeros(n_bins)
rate_gti = 1.
else:
psd_gti /= segs_per_gti
rate_gti /= segs_per_gti
psds_per_gti = np.append(psds_per_gti,
psd_gti[:, np.newaxis], axis=1)
rates_per_gti = np.append(rates_per_gti, rate_gti)
n_gti += 1
## GTI finished
if debug and n_seg >= 5:
break
print("File finished! Total segs in file: %d" % n_seg)
else:
print("WARNING: No events in file %s" % in_file)
## Chopping off the initializing zeros
psd = psd[:, 1:]
psds_per_gti = psds_per_gti[:, 1:]
exposure = n_seconds * n_seg
# print("Exposure: " + str(exposure))
# print("Shape psd: " + str(np.shape(psd)))
assert np.shape(psd)[-1] == len(rate), "Axes for psd & rate don't line up."
## Setting up for re-binning in frequency
tmp0 = np.ones(int(n_bins / 2 + 1))
tmp1, tmp2, tmp3, tmp4, tmp5 = geom_rb(tmp0, tmp0, tmp0,
rebin_const=rebin_by)
new_f_n_bins = int(len(tmp1))
dyn_psd = np.zeros((new_f_n_bins, int(n_seg)))
dyn_gtipsd = np.zeros((new_f_n_bins, int(n_gti)))
p_freq = freq[0:int(n_bins / 2)]
## Normalizing and re-binning the dynamical power spectra
for i in range(n_seg):
n_psd = psd[0:int(n_bins/2), i]*2*dt / n_bins / rate[i]**2
rb_freq, dyn_psd[:, i], rb_err, f_min, f_max = geom_rb(p_freq, n_psd,
tmp0, rebin_const=rebin_by)
## Normalizing, re-binning, and plotting the average power spectrum of
## each GTI
font_prop = font_manager.FontProperties(size=14)
gtipsd_list = []
for i in range(n_gti):
n_psd = psds_per_gti[0:int(n_bins/2), i]*2*dt / n_bins / rates_per_gti[i]**2
rb_freq, dyn_gtipsd[:, i], rb_err, f_min, f_max = geom_rb(p_freq, n_psd,
tmp0, rebin_const=rebin_by)
plt.plot(rb_freq, dyn_gtipsd[:, i], lw=2)
plt.xscale('log')
plt.yscale('log')
plt.xlim(rb_freq[1], rb_freq[-1])
plt.xticks(ticks=[0.1, 1, 10], labels=["0.1", "1", "10"])
plt.ylim(1E-4, 8E-1)
plt.xlabel("Frequency (Hz)", fontproperties=font_prop)
plt.ylabel(r'Power [(rms/mean)$^{2}$/Hz]',
fontproperties=font_prop)
plt.tick_params(axis='x', labelsize=14, bottom=True, top=True,
labelbottom=True, labeltop=False, direction="in")
plt.tick_params(axis='y', labelsize=14, left=True, right=True,
labelleft=True, labelright=False, direction="in")
gtipsd_file = "%s_gti%d.png" % (out_file_base, i)
gtipsd_file = gtipsd_file.replace(obj_name, "%s/psds" % obj_name)
plt.savefig(gtipsd_file)
plt.close()
gtipsd_list.append(gtipsd_file)
#######################################################
## Saving the dynamical power spectrum to a FITS table
#######################################################
out_tab = Table()
out_tab.add_column(Column(data=rb_freq, name="FREQUENCY", unit="Hz"))
out_tab.add_column(Column(data=dyn_psd, name="PSD"))
out_tab.add_column(Column(data=dyn_gtipsd, name="PSD_PER_GTI"))
out_tab.meta['OBJECT'] = obj_name
out_tab.meta['INST'] = "NICER"
out_tab.meta['TODAY'] = str(datetime.now())
out_tab.meta['INFILE'] = in_file
out_tab.meta['GTI_FILE'] = gti_file
out_tab.meta['CLOCKTIM'] = first_start_time
out_tab.meta['N_SEG'] = n_seg
out_tab.meta['N_GTI'] = n_gti
out_tab.meta['N_SEC'] = n_seconds
out_tab.meta['OLD_NBIN'] = n_bins
out_tab.meta['OLD_DF'] = df
out_tab.meta['NEW_NBIN'] = new_f_n_bins
out_tab.meta['REBIN'] = rebin_by
out_tab.meta['NYQUIST'] = nyquist
out_tab.meta['EXPOSURE'] = exposure
out_tab.meta['DT'] = dt
out_tab.meta['RANGE_B1'] = "%.2f-%.2f-keV" % (band_le, band_he)
rb_out_file = out_file_base +"_dynpsd.fits"
out_tab.write(rb_out_file, overwrite=True)
# print(n_seg)
# print(rb_freq)
# print(dyn_psd)
# print(rate)
# print(gtipsd_list)
return n_seg, rb_freq, dyn_psd, rate, gtipsd_list
# noinspection PyInterpreter
if __name__ == "__main__":
##################
## Getting set up
##################
homedir = os.path.expanduser("~")
exe_dir = homedir + "/Documents/Research/NICER_exploration"
obj_name = "GX_339-4"
obj_prefix = "gx339-2021"
data_dir = homedir + "/Reduced_data/%s" % obj_name
dt = 1 / 64.
n_seconds = 32 # length of light curve segment, in seconds
rebin_by = 1.03
debug = False
# debug = True
# overwrite = False
overwrite = True
band_le = 2.
band_he = 12.
out_list_file = exe_dir + "/out/%s/%s_dynpsd-list.txt" % (obj_name,
obj_prefix)
## Need to have already made this file with the list of local filenames
## in data_dir
input_list = exe_dir + "/in/%s_evtlists.txt" % obj_prefix
## Need to have already made this file in make_GTIs.ipynb
gti_list = exe_dir + "/in/%s_32sGTIlists.txt" % obj_prefix
###########################################################################
###########################################################################
print("\tDebugging? %s!" % str(debug))
print("\tOverwriting? %s!" % str(overwrite))
## For making a light curve of each detector (to check for flares)
detid_bin_file = exe_dir + "/in/detectors.txt"
## Could otherwise use n_chans = detchans FITS keyword in rsp matrix, and
## chan_bins=np.arange(detchans+1) (need +1 for how histogram does ends)
detID_bins = np.loadtxt(detid_bin_file, dtype=np.int)
#################
## And it begins
#################
n_bins = int(n_seconds / dt)
freq = fftpack.fftfreq(n_bins, d=dt)
df = np.median(np.diff(freq))
nyquist = 1.0 / (2.0 * dt)
n_bins = int(n_seconds / dt)
assert np.allclose(df, 1. / n_seconds)
print("df: " + str(df))
print("Nyquist: " + str(nyquist))
print("n_bins: " + str(n_bins))
print("dt: " + str(dt))
print("List of event files: %s" % input_list)
assert os.path.isfile(input_list)
## Input_file is a list of eventlists, so get each of those files
data_files = [line.strip() for line in open(input_list)]
if not data_files: ## If data_files is an empty list
raise Exception("ERROR: No files in the list of event lists: %s"
% input_list)
## Same with GTI files.
gti_files = [line.strip() for line in open(gti_list)]
if not gti_files: ## If gti_files is an empty list
raise Exception("ERROR: No files in the list of GTI files: %s"
% gti_list)
## Initializations for things we want to keep track of across all the files
n_files = 1
out_list = []
gtipsd_list = np.asarray([])
all_rate = np.asarray([])
n_seg = 0
file_segs = [0]
## Because we want to plot a binned dynamical power spectrum
tmp0 = np.ones(int(n_bins / 2 + 1))
tmp1, tmp2, tmp3, tmp4, tmp5 = geom_rb(tmp0, tmp0, tmp0,
rebin_const=rebin_by)
new_f_n_bins = int(len(tmp1))
dyn_psd = np.zeros((new_f_n_bins, 1))
##################################
## Looping through the data files
##################################
for (in_file, gti_file) in zip(data_files, gti_files):
if in_file[0] == '.':
in_file = exe_dir + in_file[1:]
else:
in_file = data_dir + "/" + in_file
gti_file = data_dir + "/" + gti_file
print("\nInput file %d/%d: %s" % (n_files, len(data_files), in_file))
end_num = in_file.split('/')[-1].split('.')[0].split('-')[-1]
try:
filenum = int(end_num)
except TypeError or ValueError:
filenum = n_files
if debug:
out_file_base = "%s/out/%s/debug_%s-%s_%dsec_%ddt" % \
(exe_dir, obj_name, obj_prefix, str(filenum),
n_seconds, int(1 / dt))
else:
out_file_base = "%s/out/%s/%s-%s_%dsec_%ddt" % \
(exe_dir, obj_name, obj_prefix, str(filenum), n_seconds,
int(1 / dt))
out_file = out_file_base + "_dynpsd.fits"
if debug:
print(out_file)
print("Is file: ", os.path.isfile(out_file))
print("Overwrite: ", overwrite)
if overwrite or ((not overwrite) and (not os.path.isfile(out_file))):
file_n_seg, p_freq, file_rb_psd, file_rate, \
file_gtipsd_list = each_file(out_file_base, obj_name, in_file,
gti_file, n_bins, dt, df,
n_seconds, band_le, band_he,
nyquist, rebin_by)
n_seg += file_n_seg
dyn_psd = np.append(dyn_psd, file_rb_psd, axis=1)
all_rate = np.append(all_rate, file_rate)
gtipsd_list = np.append(gtipsd_list, file_gtipsd_list, axis=0)
file_segs.append(n_seg)
else:
print("File has been processed previously. I hope it was with the "
"same energy bands! Moving on.")
out_list.append(out_file)
n_files += 1
print("Finished processing all files in list.")
if n_seg == 0:
print("WARNING: No files have been processed. Re-run with new data or "
"with overwrite=True.")
exit()
## Chopping off initializing zeroes
dyn_psd = dyn_psd[:, 1:]
assert len(file_segs) == n_files, "Don't have correct segment separators for files."
## Prepping for output of whole shebang
out_file_base = "%s/out/%s/%s_%dsec_%ddt" % \
(exe_dir, obj_name, obj_prefix, n_seconds, int(1 / dt))
plot_file = "%s_dynpsd_rb.png" % out_file_base
gtipsd_outfile = "%s_gtipsdlist.txt" % out_file_base
psd_gif_file = "%s_psd.gif" % out_file_base
## Saving all the gti psd plots to a list
with open(gtipsd_outfile, 'w') as f:
[f.write("%s\n" % gtipsd_file) for gtipsd_file in gtipsd_list]
#########################################
## Plotting the dynamical power spectrum
#########################################
lf = int(find_nearest(p_freq, 0.1)[1])
uf = int(find_nearest(p_freq, 20)[1])
amp_min = 5E-4
amp_max = 5E-1
seg_num = np.arange(0, n_seg+1, dtype=int)
font_prop = font_manager.FontProperties(size=20)
fig, ax = plt.subplots(1, 1, figsize=(13.5, 6.75), dpi=300)
plt.pcolor(seg_num, p_freq[lf-1:uf+1], dyn_psd[lf-1:uf+1,:],
shading='auto', cmap='inferno',
norm=colors.LogNorm(vmin=amp_min, vmax=amp_max))
cbar = plt.colorbar(pad=0.01)
cbar.set_label(r'Power [(rms/mean)$^{2}$/Hz]',
fontproperties=font_prop)
cb_ax = cbar.ax
cb_ax.tick_params(axis='y', labelsize=18)
ax.set_ylabel('Frequency (Hz)', fontproperties=font_prop)
ax.set_yscale('log')
ax.set_ylim(p_freq[lf], p_freq[uf])
ax.yaxis.set_major_formatter(ScalarFormatter())
for file_sep in file_segs:
ax.axvline(file_sep, c='black', lw=1)
# ax.set_xlim(1, lfqpo.n_seg+1)
ax.set_xlabel(r'Elapsed time ($\times$ %d s)' % n_seconds,
fontproperties=font_prop)
ax.set_title("%.0f-%.0f keV dynamical power spectrum" % (band_le, band_he),
fontproperties=font_prop)
## Setting the axes' minor ticks. It's complicated.
if debug:
xLocator = MultipleLocator(1)
ax.set_xticks(np.arange(0, n_seg, 5))
else:
xLocator = MultipleLocator(100)
ax.set_xticks(np.arange(0, n_seg, 500))
ax.xaxis.set_minor_locator(xLocator)
ax.tick_params(axis='both', labelsize=20)
ax.tick_params(which='major', width=1.5, length=7)
ax.tick_params(which='minor', width=1.5, length=4)
for axis in ['top', 'bottom', 'left', 'right']:
ax.spines[axis].set_linewidth(1.5)
# Save this monstrosity before you lose it, and tell the user where it is
plt.savefig(plot_file)
print("Dynamical power spectrum: %s" % plot_file)
if debug:
subprocess.call(['open', plot_file])
## Making a gif of all the gti psd plots
print("GIF command:")
print("convert -delay 35 @%s %s" % (gtipsd_outfile, psd_gif_file))
try:
cmd = ['convert', '-delay', '35', '@%s' % gtipsd_outfile, psd_gif_file]
child = subprocess.Popen(cmd, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
output, error = child.communicate()
if child.returncode != 0:
raise Exception("Oops, GIF wasn't made.")
except:
print("Internal problem making the GIF")
else:
print("GIF of power spectra for each GTI: %s" % psd_gif_file)
subprocess.call(['open', '-a', 'Firefox', psd_gif_file])