-
Notifications
You must be signed in to change notification settings - Fork 2
/
StatTools.h
executable file
·96 lines (70 loc) · 3.62 KB
/
StatTools.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
//
// StatTools.h
// segmenthreetion
//
// Created by Albert Clapés on 17/02/14.
//
//
#ifndef __segmenthreetion__StatTools__
#define __segmenthreetion__StatTools__
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "GridMat.h"
// Builds an histogram of the values contained in a vector (or matrix)
void histogram(cv::Mat mat, int nbins, cv::Mat & hist);
// Create a column vector containing the numbers in the interval [a,b] shuffled randomly
cv::Mat shuffledVector(int a, int b, cv::RNG randGen);
cv::Mat shuffledVector(int a, int b);
// Create a column vector containing the numbers in the interval [0,n) shuffled randomly
cv::Mat shuffledVector(int n, cv::RNG randGen);
cv::Mat shuffledVector(int n);
// Create a vector of labels representing the k folds of n elements
void cvpartition(int n, int k, int seed, cv::Mat& partitions);
void cvpartition(cv::Mat labels, int k, int seed, cv::Mat& partitions); // stratified
void cvpartition(GridMat labels, int k, int seed, GridMat& partitions); // stratified
// Mathematical function approximating a Gaussian function
double phi(double x);
// Sort a vector by unique values
void uniqueSortValues(vector<int> & values);
// Find unique values of a Mat and returns them sorted
void findUniqueValues(cv::Mat image, vector<int> & values);
// Find unique values of a vector and returns them sorted
void findUniqueValues(vector<int> v, vector<int> & values);
// Generate variations with repetition
template<typename T>
void variate(vector<vector<T > > list, vector<vector<T > >& variations);
template<typename T>
void _variate(vector<vector<T > > list, int idx, vector<T> v, vector<vector<T > >& variations);
template<typename T>
void variate(vector<vector<T > > list, cv::Mat& variations);
template<typename T>
void _variate(vector<vector<T > > list, int idx, cv::Mat v, cv::Mat& variations);
template<typename T>
void expandParameters(vector<vector<T> > params, vector<vector<T> >& expandedParams);
template<typename T>
void expandParameters(vector<vector<T> > params, int ncells, vector<vector<T> >& expandedParams);
template<typename T>
void expandParameters(vector<vector<T> > params, cv::Mat& expandedParams);
template<typename T>
void selectParameterCombination(vector<vector<T> > expandedParams, int hp, int wp, int nparams,
int idx, vector<cv::Mat>& selectedParams);
template<typename T>
void selectBestParameterCombination(vector<vector<T> > expandedParams, int hp, int wp, int nparams,
GridMat goodnesses, vector<cv::Mat>& selectedParams);
template<typename T>
void selectBestParameterCombination(GridMat goodnesses, vector<cv::Mat>& selectedParams);
float accuracy(cv::Mat actuals, cv::Mat predictions);
void accuracy(GridMat actuals, GridMat predictions, cv::Mat& accuracies);
void accuracy(cv::Mat actuals, GridMat predictions, cv::Mat& accuracies);
float accuracy(GridMat actuals, GridMat predictions);
float accuracy(cv::Mat actuals, GridMat predictions);
void accuracy(cv::Mat actuals, cv::Mat predictions, cv::Mat partitions, cv::Mat& accuracies);
void accuracy(cv::Mat actuals, GridMat predictions, cv::Mat partitions, GridMat& accuracies);
template<typename T>
void narrow(cv::Mat coarse, cv::Mat goodnesses, int steps, int* discrete, cv::Mat& narrow);
void computeConfidenceInterval(cv::Mat values, float* mean, float* confidence, float alpha = 0.05);
void computeConfidenceInterval(GridMat values, cv::Mat& mean, cv::Mat& confidence, float alpha = 0.05);
float computeF1Score(int tp, int fp, int fn);
#endif /* defined(__segmenthreetion__StatTools__) */