-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotting.py
249 lines (194 loc) · 8.92 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import seaborn as sns
from copy import deepcopy
import numpy as np
from tempfile import NamedTemporaryFile
import nibabel as nib
from surfer import project_volume_data
import matplotlib.pyplot as plt
import pylab as pl
def compress_values(array):
unique = np.unique(array)
d = dict(zip(unique, np.arange(0, unique.shape[0])))
for k, v in d.iteritems(): array[array==k] = v
return array
def surf_clusters(brain, nifti, colormap=None, level_mask=None, **kwargs):
"""" Display a nifti image of a clustering solution (discrete values) onto a pysurfer brain bilaterally
Args:
brain - pysurfer brain
nifti - nifti image to display
colormap - colormap to use, if none uses husl palette
spatial_mask - Optional spatial mask to apply.
level_mask - Optionally mask certain clusters (levels) of the image """
args = {'thresh': 0.001, 'alpha': 0.8,
'colorbar': False, 'remove_existing': True, 'min': 1}
if kwargs != {}:
args.update(kwargs)
if colormap is None:
n_clusters = int(nifti.get_data().max())
colormap = sns.color_palette('husl', n_clusters)
from random import shuffle
shuffle(colormap)
if level_mask is not None:
nifti = deepcopy(nifti)
data = nifti.get_data()
unique = np.unique(data[data.nonzero()])
for val in unique:
if not val in level_mask:
data[data == val] = float(0)
unique = np.unique(data[data.nonzero()])
colormap = [v for i, v in enumerate(colormap) if i + 1 in unique]
compress_values(nifti.get_data())
with NamedTemporaryFile(suffix='.nii.gz') as f:
nib.save(nifti, f.name)
l_roi_surf = project_volume_data(f.name, "lh",
subject_id="fsaverage", projsum='max', smooth_fwhm=0)
r_roi_surf = project_volume_data(f.name, "rh",
subject_id="fsaverage", projsum='max', smooth_fwhm=0)
# Remap colors given that file is discrete
l_cols = [colormap[int(np.round(c)) - 1] for c in np.unique(l_roi_surf)[1:]]
if len(l_cols) < 2:
l_cols = l_cols + [(0, 0, 0)]
r_cols = [colormap[int(np.round(c)) - 1] for c in np.unique(r_roi_surf)[1:]]
if len(r_cols) < 2:
r_cols = r_cols + [(0, 0, 0)]
brain.add_data(l_roi_surf, hemi='lh', colormap=l_cols, **args)
brain.add_data(r_roi_surf, hemi='rh', colormap=r_cols, **args)
def surf_coactivation(brain, niftis, colormap=None, reduce_alpha_step = 0, **kwargs):
args = {'thresh' : 0.001, 'alpha' : 0.85, 'colorbar' : False, 'min' : 0}
if kwargs != {}:
args.update(kwargs)
if colormap is None:
colormap = sns.color_palette('Set1', len(niftis))
for i, image in enumerate(niftis):
with NamedTemporaryFile(suffix='.nii.gz') as f:
nib.save(image, f.name)
l_roi_surf = project_volume_data(f.name, "lh",
subject_id="fsaverage", smooth_fwhm=2)
r_roi_surf = project_volume_data(f.name, "rh",
subject_id="fsaverage", smooth_fwhm=2)
args['remove_existing'] = i == 0
color = sns.light_palette(colormap[i], n_colors=10)[5:]
if l_roi_surf.sum() > 0:
brain.add_data(l_roi_surf, hemi='lh', colormap=color, **args)
if r_roi_surf.sum() > 0:
brain.add_data(r_roi_surf, hemi='rh', colormap=color, **args)
args['alpha'] -= reduce_alpha_step
def plot_clf_polar(importances, palette=None, mask=None, **kwargs):
""" Make polar plot for classificaiton results.
importances - formatted importances
palette - Colors to use for each region
mask - List of which regions to include, by default uses all """
import pandas as pd
import seaborn as sns
if mask is not None:
importances = importances[importances.region.isin(mask)]
pplot = pd.pivot_table(importances, values='importance', index='feature', columns=['region'])
if palette is None:
palette = sns.color_palette('Set1', importances.region.unique().shape[0])
if mask is not None:
palette = [n[0] for n in sorted(zip(np.array(palette)[np.array(mask)-1], mask), key=lambda tup: tup[1])]
return plot_polar(pplot, overplot=True, palette=palette, **kwargs)
def plot_polar(data, n_top=3, selection='top', overplot=False, labels=None,
palette='husl', reorder=False, method='weighted', metric='correlation',
label_size=26, threshold=None, max_val=None,
alpha_level=1, legend=False, error_bars=None, min_val=-0.85):
""" Make a polar plot
data - Tabular data of shape features x classes
n_top - Number of features to select
selection - Selection method to use `
(top = M strongest for each class; std = N with greatest std across all)
overplot - Overlap plots for each class?
labels - Subset of features to use (overrides auto selection by n_top)
palette - Color palette to use (can be label or list of colors from seaborn)
reorder - If True, uses hierarchical clustering to reorder axis
method - Method to use for clustering
metric - Metric to use for clustering
label_size - X axis label size
threshold - Value to draw an optional line that denotes significance threshold
max_val - Maximum value of y axis
min_val - Minimum value of y axis
alpha_level - transparency value for lines
legend - Show legend?
error_bars - Option bootstrapped data to draw error bars """
n_panels = data.shape[1]
if labels is None:
if selection == 'top':
labels = []
for i in range(n_panels):
labels.extend(data.iloc[:, i].sort_values(ascending=False) \
.index[:n_top])
labels = np.unique(labels)
elif selection == 'std':
labels = data.T.std().sort_values(ascending=False).index[:n_top]
data = data.loc[labels,:]
else:
data = data.loc[labels,:]
if error_bars is not None:
error_bars = error_bars.loc[labels,:]
if reorder is True:
# Use hierarchical clustering to order
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import linkage, leaves_list
dists = pdist(data, metric=metric)
pairs = linkage(dists, method=method)
pairs[pairs < 0] = 0
order = leaves_list(pairs)
data = data.iloc[order,:]
if error_bars is not None:
error_bars = error_bars.iloc[order,:]
labels = [labels[i] for i in order]
theta = np.linspace(0.0, 2 * np.pi, len(labels), endpoint=False)
## Add first
theta = np.concatenate([theta, [theta[0]]])
if overplot:
fig, ax = plt.subplots(1, 1, subplot_kw=dict(polar=True))
fig.set_size_inches(10, 10)
else:
fig, axes = plt.subplots(n_panels, 1, sharex=False, sharey=False,
subplot_kw=dict(polar=True))
fig.set_size_inches((6, 6 * n_panels))
if isinstance(palette, str):
from seaborn import color_palette
colors = color_palette(palette, n_panels)
else:
colors = palette
for i in range(n_panels):
if overplot:
alpha = 0.025
else:
ax = axes[i]
alpha = 0.8
if max_val is None:
if error_bars is not None:
max_val = data.values.max() + error_bars.values.max() + data.values.max() * .02
else:
max_val = data.values.max()
ax.set_ylim(min_val, max_val)
d = data.iloc[:,i].values
d = np.concatenate([d, [d[0]]])
name = data.columns[i]
if error_bars is not None:
e = error_bars.iloc[:,i].values
e = np.concatenate([e, [e[0]]])
else:
e = None
if error_bars is not None:
ax.errorbar(theta, d, yerr=e, capsize=0, color=colors[i], elinewidth = 3, linewidth=0)
else:
ax.plot(theta, d, alpha=alpha_level - 0.1, color=colors[i], linewidth=8, label=name)
ax.fill(theta, d, ec='k', alpha=alpha, color=colors[i], linewidth=8)
ax.set_xticks(theta)
ax.set_rlabel_position(11.12)
ax.set_xticklabels(labels, fontsize=label_size)
[lab.set_fontsize(22) for lab in ax.get_yticklabels()]
if threshold is not None:
theta = np.linspace(0.0, 2 * np.pi, 999, endpoint=False)
theta = np.concatenate([theta, [theta[0]]])
d = np.array([threshold] * 1000)
ax.plot(theta, d, alpha=1, color='black', linewidth=2, linestyle='--')
if legend is True:
ax.legend(bbox_to_anchor=(1.15, 1.1))
circle = pl.Circle((0, 0), np.abs(min_val), transform=ax.transData._b, color="grey", alpha=0.22 )
ax.add_artist(circle)
plt.tight_layout()
return labels, data