-
Notifications
You must be signed in to change notification settings - Fork 2
/
pyabravibe.py
631 lines (520 loc) · 24 KB
/
pyabravibe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
# -*- coding: utf-8 -*-
"""
Python version of Anders Brandt AbraVibe Matlab Toolbox
Compatible Python 3.5.7
ABRAVIBE
A MATLAB/Octave toolbox for Noise and Vibration Analysis and Teaching
Revision 1.2
Anders Brandt
Department of Technology and Innovation
University of Southern Denmark
abra@iti.sdu.dk
Converted to Python by
Arnaud Dessein
Siemens Gamesa Renewable Energy A/S
arnaud.dessein@siemensgamesa.com
Uasge :
from pyabravibe import pyabravibe as pa
pa.alinspec()
License : GNU GPL Version 3
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import numpy as np
from math import pi
from numpy.linalg import inv
from scipy import linalg, signal
from scipy.interpolate import interp1d
def alinspec(y, fs, w, M=1, ovlp=0):
"""
ALINSPEC Calculate linear (rms) spectrum from time data
[Lyy,f] = alinspec(y,fs,w,M,ovlp)
Lyy Linear spectrum of time signal y
f Frequency vector for Pyy, N/2+1-by-1
y Time data in column vector(s). If more than one
column, each column is treated separately
fs Sampling frequency for y
w Time window with length(FFT blocksize), power of 2
(1024, 2048,...)
M Number of averages (FFTs), default is 1
ovlp Overlap in percent, default is 0
D Number of vectors (columns) in y
Example:
[Lyy,f]=alinspec(y,1000,aflattop(1024),10,50)
Computes a linear spectrum using a flattop window with 1024 blocksize, 10
averages, with 50 overlap
ALINSPEC produces a linear, rms weighted spectrum as if y was a periodic
signal. A peak in Lyy is interpreted as a sine at that frequency with an
RMS value corresponding to the peak value in Lyy.
See also winacf apsdw ahann aflattop
Copyright (c) 2009-2011 by Anders Brandt
Email: abra@iti.sdu.dk
Version: 1.0 2011-06-23
This file is part of ABRAVIBE Toolbox for NVA
"""
# Make copy of input arrays in order to preserve them
_y = np.copy(y)
# Set up parameters
N = len(w) # FFT block size
df = fs/N # Frequency increment
acf = len(w)/sum(w) # Window amplitude correction factor
K = int(np.floor((1-ovlp/100)*N)) # Overlap in samples
_y = np.asfarray(_y) # Necessary in prython (convert integers to floats)
if np.shape(_y)[0] < N:
raise Exception('Not enough data, not even one time block!')
# Process each time block (column) in _y
if len(np.shape(_y)) == 1:
_y = np.reshape(_y, (-1, 1))
Nsamp, Nvectors = np.shape(_y)
# Check that specified overlap and number of FFTs does not exhaust data
L = N+(M-1)*K
if L > Nsamp:
raise Exception("Not enough data in y to perform requested number of "
"averages!")
Pyy = np.zeros((N, Nvectors))
for vec in range(0, Nvectors):
_y[:, vec] = _y[:, vec] - np.mean(_y[:, vec]) # Remove mean
n = 0 # Block number
i1 = n*K # Index into x
i2 = i1+N
y_tmp = _y[i1:i2, vec]
Y = acf*np.fft.fft(np.multiply(y_tmp, w)/N) # Scaled, windowed FFT
Pyy[:, vec] = np.square(np.abs(Y)) # Window (amplitude) correction
n = 1 # Next block number
i1 = n*K # Index into y
i2 = i1+N
while n < M:
y_tmp = _y[i1:i2, vec]
Y = acf*np.fft.fft(np.multiply(y_tmp, w))/N
# Linear average accumulation
Pyy[:, vec] = n/(n+1)*Pyy[:, vec]+np.square(np.abs(Y))/(n+1)
n = n+1
i1 = n*K # Index into x
i2 = i1+N
# Convert to single-sided spectra and take square root
Pyy = Pyy[0:int(np.floor(N/2)+1), :]
Pyy[1:, :] = 2*Pyy[1:, :]
Lyy = np.sqrt(Pyy)
f = np.arange(0, int(np.floor(N/2)+1)*df, df)
return (Lyy, f)
def alinspecp(y, x, fs, w, M=1, ovlp=0):
"""
ALINSPECP Calculate linear (rms) spectrum of time data, with phase
[Lyx,f] = alinspecp(y,x,fs,w,M,ovlp)
Lyx Linear spectrum of time signal y with phase from Gyx
f Frequency vector for Lyx, N/2+1-by-1
y Time data in column vector(s). If more than one
column, each column is treated separately
x Time data for phase reference
fs Sampling frequency for y
w Time window with length(FFT blocksize), power of 2
(1024, 2048,...)
M Number of averages (FFTs), default is 1
ovlp Overlap in percent, default is 0
D Number of vectors (columns) in y
Example:
[Lyx,f]=alinspecp(y,x,1000,aflattop(1024),10,50)
ALINSPECP produces a linear, rms weighted spectrum as if y was a periodic
signal. A peak in Lyx is interpreted as a sine at that frequency with an
RMS value corresponding to the peak value in Lyx and with phase relative
to signal x.
See also alinspec winacf apsdw ahann aflattop
Copyright (c) 2009-2011 by Anders Brandt
Email: abra@iti.sdu.dk
Version: 1.0 2011-06-23
1.1 2011-10-07 Fixed new syntax, was not working
This file is part of ABRAVIBE Toolbox for NVA
Set up depending on input parameters
"""
# Make copy of input arrays in order to preserve them
_y = np.copy(y)
# Set up parameters
N = len(w) # FFT block size
df = fs/N # Frequency increment
acf = len(w)/sum(w) # Window amplitude correction factor
K = int(np.floor((1-ovlp/100)*N)) # Overlap in samples
_y = np.asfarray(_y) # Necessary in prython (convert integers to floats)
if np.shape(_y)[0] < N:
raise Exception('Not enough data, not even one time block!')
# Process each time block (column) in _y
if len(np.shape(_y)) == 1:
_y = np.reshape(_y, (-1, 1))
Nsamp, Nvectors = np.shape(_y)
# Check that specified overlap and number of FFTs does not exhaust data
L = N+(M-1)*K
Mmax = (Nsamp-N)/K + 1
if L > Nsamp:
raise Exception("Not enough data in y to perform requested number of "
"averages! Maximum is {}".format(Mmax))
Pyy = np.zeros((N, Nvectors))
Pyx = np.zeros((N, Nvectors), dtype=np.complex128)
Ayx = np.zeros((N, Nvectors), dtype=np.complex128)
for vec in range(0, Nvectors):
_y[:, vec] = _y[:, vec] - np.mean(_y[:, vec]) # Remove mean
n = 0 # Block number
i1 = n*K # Index into x
i2 = i1+N
y_tmp = _y[i1:i2, vec]
x_tmp = x[i1:i2]
Y = acf*np.fft.fft(np.multiply(y_tmp, w)/N) # Scaled, windowed FFT
YX = np.multiply(np.fft.fft(y_tmp), np.conj(np.fft.fft(x_tmp)))
Pyy[:, vec] = np.square(np.abs(Y)) # Window (amplitude) correction
Pyx[:, vec] = YX
n = 1 # Next block number
i1 = n*K # Index into y
i2 = i1+N
while n < M:
y_tmp = _y[i1:i2, vec]
Y = acf*np.fft.fft(np.multiply(y_tmp, w))/N
# Linear average accumulation
Pyy[:, vec] = n/(n+1)*Pyy[:, vec]+np.square(np.abs(Y))/(n+1)
Pyx[:, vec] = n/(n+1)*Pyx[:, vec]+(YX)/(n+1)
n = n+1
i1 = n*K # Index into x
i2 = i1+N
# Phased power spectrum
Ayx[:, vec] = np.multiply(Pyy[:, vec],
np.exp(1j*np.angle(Pyx[:, vec])))
# Convert to single-sided spectra and take square root
Ayx = Ayx[0:int(np.floor(N/2)+1), :]
Lyx = np.empty_like(Ayx, dtype=np.complex128)
Ayx[1:, :] = 2*Ayx[1:, :]
for vec in range(0, Nvectors):
Lyx[:, vec] = np.multiply(np.sqrt(np.abs(Ayx[:, vec])),
np.exp(1j*np.angle(Ayx[:, vec])))
f = np.arange(0, int(np.floor(N/2)+1)*df, df)
return (Lyx, f)
def mck2frf(f, M, C, K, indof=(0,), outdof=(0,), typefrf='v'):
"""
MCK2FRF Calculate FRF(s) from M, C, K matrices
H = mck2frf(f,M,C,K,indof,outdof,type)
H Frequency response matrix in [(m/s)/N] (matrix) N-by-D-by-R
N length(f), number of frequency values
D length(outdof), number of responses
R length(indof), number of references (inputs)
f Frequency vector in [Hz]
M Mass matrix in [kg]
C Damping matrix in [Ns/m]
K Stiffness matrix in m/N
indof Input DOF(s), may be a vector for many reference
DOFs, (default = (0,)
outdof Output DOF(2) may be a vector for many responses
(default = (0,)
typefrf Type of output FRF as string:
'Flexibility' or 'd' generates displacement/force
'Mobility' or 'v' generates velocity/force (Default)
'Accelerance' or 'a' generates acceleration/force
Example:
H = mck2frf(f,M,C,K,[1 2 4],[5:12],'v');
Calculates mobilities with columns corresponding to force in
DOFs 1, 2, and 4, and responses in DOFs 5 to 12. H will in this case be
of dimension (N, 8, 3) where N is the number of frequency values.
Copyright (c) 2009-2011 by Anders Brandt
Email: abra@iti.sdu.dk
Version: 1.0 2011-06-23
This file is part of ABRAVIBE Toolbox for NVA
"""
# Parse Input Parameters
if typefrf.upper() == 'FLEXIBILITY' :
typefrf = 'D'
elif typefrf.upper() == 'MOBILITY' :
typefrf = 'V'
elif typefrf.upper() == 'ACCELERANCE' :
typefrf = 'A'
elif typefrf.upper() in ['D', 'V', 'A']:
typefrf = typefrf.upper()
else:
raise Exception('Wrong input type!')
# Find dimensions
N = len(f)
D = len(outdof)
R = len(indof)
# Allocate H MATRIX for output
H = np.zeros((N,D,R), dtype=np.complex)
# Main
# Loop through frequencies and use inverse of system impedance matrix:
# B(s)*X(s)=F(s) ==> B(s) in form of B=F/X
# H(s) = inv(B(s)) ==> X(s)/F(s), so that H(s)*F(s)=X(s)
for n in range(N): # Frequency index
w = 2*pi*f[n] # Omega for this frequency
Denom = -(w**2)*M+1j*w*C+K # Newton's equation in denominator of Hv
Denom = np.matrix(Denom)
InvDenom = inv(Denom); # Inverse denominator
for r in range(R):
W = np.ones_like(H[n,:,r])
W.fill(w)
if typefrf == 'D':
H[n,:,r] = InvDenom[outdof,indof[r]]
elif typefrf == 'V':
H[n,:,r] = 1j*W*InvDenom[outdof,indof[r]]
else:
H[n,:,r] = -(W**2)*InvDenom[outdof,indof[r]]
return H
def mck2modal(*args):
"""
MCK2MODAL Compute modal model (poles and mode shapes) from M,(C),K
p Column vector with poles, (or eigenfrequencies if undamped) in rad/s
V Matrix with mode shapes in columns
Prop Logical, 1 if C is proportional damping, otherwise 0
M Mass matrix
C (Optional) viscous damping matrix
K Stiffness matrix
[p,V] = mck2modal(M,K) solves for the undamped system and returns
eigenfrequencies as purely imaginary poles (in rad/s), and mode shapes (normal modes).
[p,V] = mck2modal(M,C,K) solves for the poles and mode shapes. If the
damping matrix C=aM+bK for konstants a and b, i.e. the system exhibits
proportional damping, then the undamped system is solved for mode shapes,
and the poles are calculated from the uncoupled equations in modal
coordinates. If the damping is not proportional, a general state space
formulation is used to find the (complex) mode shapes and poles.
NOTE: The list of poles is limited to the poles with positive imaginary
part, as the other half of the poles can easily be calculated as the
complex conjugates of the first ones.
Mode shape scaling:
Undamped mode shapes (normal modes) are scaled to unity modal mass
Mode shapes calculated with damping are scaled to unity modal A.
This means that the modal scaling constant, Qr = 1, that is, that all
residues are Apqr=psi_p*psi_q
This also means that the mode shapes are complex even for
proportionally damped case, but it is the most convenient scaling.
See also UMA2UMM
Copyright (c) 2009-2011 by Anders Brandt
Email: abra@iti.sdu.dk
Version: 1.0 2011-06-23
This file is part of ABRAVIBE Toolbox for NVA
Note: The way we solve the various systems in this file are not
at all necessary, but is done for pedagogical reasons.
In principal the state space formulation could be used in all cases,
and would yield correct results.
"""
if len(args) == 2: # Undamped case
# Solve the undamped case for eigenfrequencies and mode shapes
M = args[0]
K = args[1]
[V, D] = linalg.eig(linalg.solve(M,K))
[D, I] = np.sort(np.diag(D)) # Sort eigenvalues/frequencies, lowest first
V = V[:,I]
p = np.sqrt(-D) # Poles (with positive imaginary part)
Prop = None # Undefined for undamped case!
Mn = np.diag(V.conj().T*M*V) # Modal Mass
wd = np.imag(p)
for n in range(len(Mn)):
# V(:,n)=V(:,n)/sqrt((j*2*wd(n))*Mn(n)); # Which is equivalent to Mr=1/(j2wd)
V[:,n] = V[:,n]/np.sqrt((Mn[n])); # Which is equivalent to Mr=1/(j2wd)
elif len(args) == 3:
M = args[0]
C = args[1]
K = args[2]
# Find if damping is proportional. See for example
# Ewins, D. J., Modal Testing: Theory, Practice and Application,
# Research Studies Press, 2000.
M1 = linalg.solve(M, K).dot(linalg.solve(M, C))
M2 = linalg.solve(M, C).dot(linalg.solve(M, K))
if linalg.norm(M1-M2) < 1e-6: # If proportional damping
# Solve the undamped case for mode shapes
(D,V) = linalg.eig(linalg.solve(M, K))
D = np.sort(D) # Sort eigenvalues/frequencies, descending
I = np.argsort(D) # Sort eigenvalues/frequencies, descending
V = V[:, I]
wn = np.sqrt(D) # Undamped natural frequencies
# Now diagonalize M, C, K into modal coordinates
Mn = np.diag(V.conj().T*M*V) # Modal Mass
for n in range(len(Mn)):
V[:,n] = V[:,n]/np.sqrt(Mn[n]) # Unity modal mass
Mn = np.diag(np.eye(np.shape(M)[0], np.shape(M)[1]))
Kn = np.diag(V.conj().T*K*V) # Modal Stiffness
Cn = np.diag(V.conj().T*C*V) # Modal Damping
z = (Cn/2)/np.sqrt(Kn*Mn) # relative damping from uncoupled equations
p = -z*wn+1j*wn*np.sqrt(1-z**2) # Poles (with positive imaginary part)
Prop=1
wd=np.imag(p)
for n in range(len(Mn)): # Rescale mode shapes to unity modal A
V[:,n] = V[:,n]/np.sqrt((1j*2*wd[n])) # Which is equivalent to Mr=1/(j2wd)
else:
# Non-proportional damping, solve state-space formulation
# See for example:
# Craig, R.R., Kurdila, A.J., Fundamentals of Structural Dynamics, Wiley 2006
# With this formulation, coordinates are z={x ; x_dot}
A = np.vstack((np.hstack((C,M)),np.hstack((M,np.zeros_like(M)))))
B = np.vstack((np.hstack((K,np.zeros_like(K))),np.hstack((np.zeros_like(M),-M))))
(D,V) = linalg.eig(B,-A)
# Sort in descending order
Dum = np.sort(np.abs(np.imag(D)))
I = np.argsort(np.abs(np.imag(D)))
p = D[I]
V = V[:,I]
# Rotate vectors to real first element (row 1)
phi = np.angle(V[1, :])
phi = np.diag(np.exp(-1j*phi))
V = V * phi
# Scale to unity Modal A
Ma = V.transpose().dot(A).dot(V)
for col in range(np.shape(V)[1]):
V[:,col] = V[:,col]/np.sqrt(Ma[col,col])
# Shorten to size N-by-N. NOTE! This means that in order to use the
# modal model, you need to recreate the complex conjugate pairs!
# See, e.g., MODAL2FRF
[m,n] = np.shape(V)
p = p[np.arange(0,m,2)]
V = np.vstack((V[np.arange(0,m/2,dtype=int)],V[np.arange(0,n,2)]))
Prop = 0
return (p, V, Prop)
def makexaxis(y, dx, x0=0):
"""
MAKEXAXIS Create a time or frequency x axis
x = makexaxis(y,dx,x0);
y Y axis
dx x increment
x0 Start x value (default = 0)
This command can be used to create an x axis for time data as for example
t=makexaxis(y,1/fs) if fs is the sampling frequency, and start is 0 sec.
or for a spectrum by using
f=makexaxis(Y,fs/N)
if Y is a spectrum using blocksize N, starting at 0 Hz.
Copyright (c) 2009-2011 by Anders Brandt
Email: abra@iti.sdu.dk
Version: 1.0 2011-06-23
This file is part of ABRAVIBE Toolbox for NVA
"""
N = len(y)
return np.linsace(x0, x0+(N-1)*dx, N)
def synchsampt(x, fs, tacho, TLevel, Slope, PPR, MaxOrd):
"""
SYNCHSAMPT Resample data synchronously with RPM, based on tacho signal
[xs,rpm, tc] = synchsampt(x,fs,tacho,TLevel,Slope,PPR,MaxOrd)
xs Synchronously sampled data
tc x axis for xs in cycles
x Time data
fs Sampling frequency for x
tacho Tacho signal, sampled with frequency fs
TLevel Trig level
Slope Slope, +1 or -1 for positive and negative slope, respectively
PPR Pulses per revolution of tacho signal
MaxOrd Maximum order to be able to track (gives number of samples per
revolution)
Copyright (c) 2009-2011 by Anders Brandt
Email: abra@iti.sdu.dk
Version: 1.0 2011-06-23
1.1 2013-02-02 Updated syntax description
This file is part of ABRAVIBE Toolbox for NVA
"""
FilterL = 7
SampPerRev = 2 * MaxOrd
# Find tacho instances
#=======================================
# Define time axis for tacho signal
t = makexaxis(tacho, 1/fs)
# Get trigger times
xDiff = np.diff(np.sign(tacho-TLevel)) # Produces +/- 2 where trigger event
tDiff = t[1:] # Diff shifts one sample
if Slope > 0:
tTacho = tDiff(np.where(xDiff == 2)) # Tacho positive slope instances
else:
tTacho = tDiff(np.where(xDiff == -2)) # Tacho negative slope instances
#=======================================
# Calculate rpm from time between tacho pulses. Assign rpm to second tacho
# pulse of each pair
rpmt = 60.0/PPR/np.diff(tTacho) # Instantaneous rpm values
tTacho = tTacho[1:] # diff again shifts one sample
# Smooth to obtain more stable values
a = 1
b = 1.0/FilterL*np.ones(FilterL)
rpm = signal.filtfilt(b, a, rpmt) # This is rpm(t)
#=======================================
# Now to the synchronuous sampling part:
# Take only first tacho pulse for each revolution, so we have one tacho
# pulse per revolution
tTacho=tTacho[::PPR]
# New sampling instances should now be at SampPerRev evenly spaced points
# between the two tacho pulses. The last sample, however, should be "one
# sample before" it reaches the next tacho pulse, to obtain a continuous
# signal
ts=[]
for n in range(len(tTacho)-1):
tt = np.linspace(tTacho[n],tTacho[n+1],SampPerRev+1)
ts = np.append(ts,tt[:-1])
# Now resample x on these new time points
# First upsample x
x = signal.resample(x, 10*len(x))
fs = 10*fs
tr = makexaxis(x, 1.0/fs)
# Resample original (upsampled) signal onto the angularly spread samples
xs = interp1d(tr, x, kind='linear', fill_value='extrapolate')(ts)
# Find the instantaneous rpm values for each ts
rpm = interp1d(tTacho, rpm, kind='linear')(ts)
# Define tc in cycles
tc = makexaxis(xs, 1.0/SampPerRev)
def amac(**args):
# @todo : TEST ME
"""
AMAC Calculate Modal Assurance Critera matrix M from two mode sets
M = amac(V1,V2)
M MAC matrix
V1 First mode shape matrix with modes in columns
V2 Second mode shape matrix (optional)
M = amac(V1) produces an auto MAC (V1 vs. V1 shapes)
M = amac(V1,V2) produces a cross MAC
The number of modes do not need to be the same, but the number of rows in
both matrices (DOFs) must (of course) be the same
Copyright (c) 2009-2011 by Anders Brandt
Email: abra@iti.sdu.dk
Version: 1.0 2011-06-23
This file is part of ABRAVIBE Toolbox for NVA
"""
if len(args) == 1:
V1 = args[0]
V2 = V1
if len(args) == 2:
V1 = args[0]
V2 = args[1]
else:
raise(ValueError)
(N1, M1) = V1.shape()
(N2, M2) = V2.shape()
M = np.ndarray((M1,M2), np.double)
for m1 in range(M1):
for m2 in range(M2):
M[m1,m2] = ( np.abs(V1[:,m1].dot(V2[:,m2]))**2 /
np.abs(V1[:,m1].dot(V1[:,m1])) /
np.abs(V2[:,m2].dot(V2[:,m2]))
)
return M
def amif(*args):
# @todo : TEST ME
"""
AMIF Calculate mode indicator function of (accelerance) FRFs
Mif = amif(H,Type)
Mif Mode indicator function(s)
H Frequency response, can be single function or matrix up to
3D dimensions N-by-D-by-R
Type String with MIF type:
'mif1' produces mif 1 (sum(imag)^2/sum(abs)^2 type)
'power' produces sum(abs(H)^2)
'mvmif' produces multivariate mif (Default) (multireference)
'mrmif' produces modified real mif (multireference)
'cmif' produces the complex mif (which is real, as the others)
Copyright (c) 2009-2011 by Anders Brandt
Email: abra@iti.sdu.dk
Version: 1.0 2011-06-23
1.1 2012-04-04 Changed default to 'mvmif'
This file is part of ABRAVIBE Toolbox for NVA
Reference:
Rades, M.: A Comparison of Some Mode Indicator Functions, Mechanical
Systems and Signal Processing, 1994, 8, p. 459-474
"""
if len(args) == 1:
V1 = args[0]
V2 = V1
if len(args) == 2:
V1 = args[0]
V2 = args[1]
else:
raise(ValueError)