forked from jeanbragard/jeanbragard.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
research3.html
88 lines (64 loc) · 2.94 KB
/
research3.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head>
<meta content="text/html; charset=UTF-8" http-equiv="content-type">
<!-- base href="https://jeanbragard.github.io" --><!-- comment begins with <! –– and the comment closes with ––>
"lowani.gif" "highani.gif" -->
<title>J. Bragard's research interest (III)</title>
</head><body style="background-image: url(sand.gif);">
<center>
<h1>Modelization of crystal growth in undercooled melts</h1>
</center>
<br>
<table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2">
<tbody>
<tr>
<td style="text-align: center;"><big><big><big>From atoms...</big></big></big></td>
<td style="text-align: center;"><big><big><big>...to dendrites</big></big></big></td>
</tr>
<tr>
<td style="text-align: center;"><img style="width: 242px; height: 300px;" alt="not available" src="atoms_INT.png"></td>
<td style="text-align: center;"><img style="width: 401px; height: 300px;" alt="not available" src="dendrites.gif"></td>
</tr>
</tbody>
</table>
<br>
<br>
The
solidification of a pure undercooled melt is one of the simplest
methods to form dendritic crystals and to investigate their growth
behavior and morphology under well-controlled conditions. The goal of
the present work is to model dendritic growth fully quantitatively by
linking atomistic and phase-field simulations. We use as input of the
phase-field model the anisotropic capillary and kinetics properties of
the Ni solid-liquid interface that have been predicted by Molecular
Dynamics (MD) simulations. This allows us to make quantitative
predictions of morphological development that can be directly compared
with experiments.<br>
<br>
<br>
<table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2">
<tbody>
<tr align="center">
<td><big><big><img style="width: 266px; height: 200px;" alt="mage not available" src="high_ani.png"></big></big></td>
<td><big><big><img style="width: 266px; height: 200px;" alt="not available" src="low_ani.png"></big></big></td>
</tr>
<tr>
<td style="text-align: center;"><big><big>High anisotropy</big></big></td>
<td style="text-align: center;"><big><big>Low anisotropy</big></big></td>
</tr>
</tbody>
</table>
<br>
<br>
A detailled account of this research may be found in the following
article :<br>
"<span style="font-style: italic;">Linking phase-field and atomistic
simulations to model dendritic solidification in highly undercooled
melts</span>" (<a target="_blank" href="publi_ref_files/interfsc10.pdf">2002</a>).<br>
<br>
A movie of the dendritic growth is shown here (<a href="dendlowanis.gif" target="_blank">animated GIF</a>, 890 kb).<br>
For this research, I have collaborated with <a href="https://www.polytechnique.edu/elearning/fr/mathis-plapp" target="_blank">Dr.
Mathis Plapp</a> from Ecole Polytechnique (Palaiseau, France).<br>
<br>
<br>
</body></html>