-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhull.py
131 lines (114 loc) · 4.64 KB
/
hull.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# find the convex hull of a bunch of points represented as 2-tuples
# using andrew's monotone chain algorithm
# http://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain
# does not remove collinear points if we convert <= to <
def convex_hull(points, keep_collinear=True):
points = sorted(set(points))
if len(points) <= 1:
return points
def cross(o, a, b):
return - (a[0] - o[0]) * (b[1] - o[1]) + (a[1] - o[1]) * (b[0] - o[0])
# Build lower hull
lower = []
for p in points:
if keep_collinear:
while len(lower) >= 2 and cross(lower[-2], lower[-1], p) < 0:
lower.pop()
else:
while len(lower) >= 2 and cross(lower[-2], lower[-1], p) <= 0:
lower.pop()
lower.append(p)
# Build upper hull
upper = []
for p in reversed(points):
if keep_collinear:
while len(upper) >= 2 and cross(upper[-2], upper[-1], p) < 0:
upper.pop()
else:
while len(upper) >= 2 and cross(upper[-2], upper[-1], p) <= 0:
upper.pop()
upper.append(p)
# Concatenation of the lower and upper hulls gives the convex hull.
# Last point of each list is omitted because it is repeated at the beginning of the other list.
return lower[:-1] + upper[:-1]
# find the convex hull of a bunch of points represented as 2-tuples
# we use the Jarvis march: http://en.wikipedia.org/wiki/Gift_wrapping_algorithm
# may remove collinear points, not used here
def jarvis_march(pts):
if len(pts) == 0:
return []
result = []
# first, find the leftmost point
point_on_hull = sorted(pts, key=lambda x: x[0])[0]
endpoint = None
# note: python copies tuples. no need to worry about references here
while True:
result.append(point_on_hull)
endpoint = pts[0]
for j in xrange(1, len(pts)):
if endpoint == point_on_hull or is_to_the_left(pts[j], result[-1], endpoint):
endpoint = pts[j]
point_on_hull = endpoint
if endpoint == result[0]:
break
return result
# is a to the left of the line from b to c as seen from b?
# http://kukuruku.co/hub/algorithms/a-point-localization-in-a-polygon
# note: the PIL system is left-handed, so the > must be replaced by a <
# OpenGL on the other hand is right-handed
def is_to_the_left(a, b, c):
bc = (c[0] - b[0], c[1] - b[1]) # vector from b to c
ca = (a[0] - c[0], a[1] - c[1]) # vector from c to a
return bc[0]*ca[1] - bc[1]*ca[0] < 0
# 'pix' is a pixel with coordinates (x, y)
# where 0 <= x < w * scale
# and 0 <= y < h * scale
# and w = width of the input image
# and h = height of the input image
# and scale = upscaling factor
# this function returns true if the pixel 'pix'
# is inside 'cvh', which is a convex hull
def is_inside(pix, cvh, scale):
# simple hack:
# 1. downscale pix
# 2. append it to the collinear-triple-less convex hull of n
# (assume this is precomputed)
# 3. compute the convex hull of this new list
# 4. return is_it_the_same_as_before
pts = [i for i in cvh] # deep copy of n.vor_pts
old = set(remove_all_collinear(pts))
new_pt = (float(pix[0])/scale, float(pix[1])/scale)
pts.append(new_pt)
new = set(convex_hull(pts, False))
return new == old
# returns true if point objects p1 p2 and p3 are collinear
def is_straight_line(p1, p2, p3):
a, b, c = p1.get_xy(), p2.get_xy(), p3.get_xy()
return is_straight_line_tuples(a, b, c)
# returns true if tuples a b and c are collinear
def is_straight_line_tuples(a, b, c):
if a[1] == b[1]: return b[1] == c[1]
if c[1] == b[1]: return b[1] == a[1]
slope1 = float(a[0]-b[0]) / float(a[1]-b[1])
slope2 = float(c[0]-b[0]) / float(c[1]-b[1])
return slope1 == slope2
# given a convex hull, returns a new convex hull without any collinear points
def remove_all_collinear(pts):
length = len(pts)
to_remove = set()
for i in xrange(len(pts)):
pt1 = pts[i]
pt2 = pts[(i+1) % length]
pt3 = pts[(i+2) % length]
if is_straight_line_tuples(pt1, pt2, pt3) and pt2 not in to_remove:
to_remove.add(pt2)
return [pt for pt in pts if pt not in to_remove]
def test_is_inside():
c = convex_hull([(0,0), (1,0), (1,1), (1,-1), (2,0), (2,1)])
assert is_inside((3.8, 2.2), c, 2) is False
assert is_inside((1.9, 1.1), c, 1) is False
assert is_inside((1, 1.1), c, 1) is False
c = convex_hull([(15.75, 10.25), (16.0, 11.0), (17.0, 11.0), (16.75, 10.25), (16.25, 9.75)])
assert is_inside((67, 40), c, 4) is False
if __name__ == '__main__':
test_is_inside()