-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patholdCode.py
870 lines (618 loc) · 28.2 KB
/
oldCode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
#%%
## Score Model
print('>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<')
## Model with one or two variables removed (loop can be edited)
rsqValues = []
for variable in tqdm(varsToInclude):
## The second loop can be used to understand the impacts of interaction terms (or omitted)
for variable2 in varsToInclude:
varList = list(set(varsToInclude) - set([variable, variable2]))
## Generate Model
X = whiffModelData[varList]
y = whiffModelData['whiff_prob'].values.reshape(-1,1)
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 5)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
## Score Model
score = regressor.score(x_test, y_test)
rsqValues.append(score)
if score < 0.6 and noisy:
print(variable, variable2, score)
## Plate Height and Swing Prob combine for 63%, essentially even contribution (slightly more towards plate height)
### Significant variables:
sigVarsWhiff = ['PlateHeight', 'swing_prob']
#%%
###############################
### PLATE HEIGHT - ANALYSIS ###
###############################
## Started off with all variables
varsToInclude = ['Inning', 'PAofInning', 'ReleaseSpeed', 'InducedVertBreak', 'HorzBreak',
'ReleaseHeight', 'ReleaseSide', 'Extension', 'PlateHeight', 'PlateSide',
'SpinRate', 'SpinAxis', 'swing_prob',
'BatterSide_Left',
'BatterSide_Right', 'PitchType_CHANGEUP', 'PitchType_FASTBALL',
'PitchType_SLIDER', 'Count_00', 'Count_01', 'Count_02', 'Count_10',
'Count_11', 'Count_12', 'Count_20', 'Count_21', 'Count_22', 'Count_30',
'Count_31', 'Count_32']
## These were determined using backwards selection
varsToInclude = ['ReleaseSpeed', 'InducedVertBreak', 'HorzBreak', 'PlateHeight', 'SpinRate', 'SpinAxis', 'swing_prob']
## Baseline Model (with all variables included)
## Generate Model
X = whiffModelData[varsToInclude]
y = whiffModelData['whiff_prob'].values.reshape(-1,1)
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 25)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
## Score Model
print('BASELINE MODEL SCORE (R2) :', regressor.score(x_test,y_test))
print('>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<')
### Simulation - Whiff Rate Baseline
deltas = []
avgs = []
for std in tqdm([1,2,3,4,5]):
for seed in list(range(1,101)):
seed = random.randint(1,1000)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = seed)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
#print('MODEL SCORE ', regressor.score(x_test,y_test))
x_testDF = pd.DataFrame(x_test)
x_testDF.columns = varsToInclude
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
baselineAvg = sum(scaledVals) / len(scaledVals)
### Simulation - Increase
oneStDev = abs(x_testDF['PlateHeight'].std())
x_testDF['PlateHeight'] = random.uniform(0.9,1.1) # x_testDF['PlateHeight'] - (std * oneStDev)
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
increasedAvg = sum(scaledVals) / len(scaledVals)
delta = (increasedAvg - baselineAvg) / baselineAvg
deltas.append(delta)
#print('DELTA ', delta)
#print('----------------------------')
deltaAvg = sum(deltas) / len(deltas) * 100
avgs.append(deltaAvg)
if noisy:
print('Change Avg: ', deltaAvg)
## Sanity check that it is not skewed based on batter side
whiffDataRighty = whiffData[whiffData.BatterSide == 'Right']
whiffDataLefty = whiffData[whiffData.BatterSide == 'Left']
## Note: these are pretty low correlations, but we aren't concerned
## Primarily because the model is likely reliant on iteraction terms instead of singular variables
## That is why we do the simulation test, to remove a variable and have it impact all interactions
print(whiffDataRighty['PlateHeight'].corr(whiffDataRighty['swing_prob']))
print(whiffDataLefty['PlateHeight'].corr(whiffDataLefty['swing_prob']))
#%%
#############################
### SWING PROB - ANALYSIS ###
#############################
## Tried backwise selection, but model performed better with all variables
varsToInclude = ['Inning', 'PAofInning', 'ReleaseSpeed', 'InducedVertBreak', 'HorzBreak',
'ReleaseHeight', 'ReleaseSide', 'Extension', 'PlateHeight', 'PlateSide',
'SpinRate', 'SpinAxis',
'BatterSide_Left',
'BatterSide_Right', 'PitchType_CHANGEUP', 'PitchType_FASTBALL',
'PitchType_SLIDER', 'Count_00', 'Count_01', 'Count_02', 'Count_10',
'Count_11', 'Count_12', 'Count_20', 'Count_21', 'Count_22', 'Count_30',
'Count_31', 'Count_32']
## Baseline Model
## Generate Model
X = whiffModelData[varsToInclude]
y = whiffModelData['swing_prob'].values.reshape(-1,1)
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 5)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
## Score Model
score = regressor.score(x_test, y_test)
print(score)
## Model with one or two variables removed (loop can be edited)
rsqValues = []
for variable in tqdm(varsToInclude):
## The second loop can be used to understand the impacts of interaction terms (or omitted)
for variable2 in varsToInclude:
varList = list(set(varsToInclude) - set([variable, variable2]))
## Generate Model
X = whiffModelData[varList]
y = whiffModelData['swing_prob'].values.reshape(-1,1)
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 5)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
## Score Model
score = regressor.score(x_test, y_test)
rsqValues.append(score)
if score < 0.6 and noisy:
print(variable, variable2, score)
### RESULT: Plate Side and Count have the biggest impacts (also Plate Height, but we have already covered that)
#%%
###################################
### SWING PROB ANALYSIS - COUNT ###
###################################
## Let's split based off batter side
whiffDataRighty = whiffModelData[whiffModelData.BatterSide_Right == 1]
whiffDataLefty = whiffModelData[whiffModelData.BatterSide_Left == 1]
# print('swingProb', whiffModelData['swing_prob'].corr(whiffDataRighty['whiff_prob']))
## Count
print('COUNT')
for DF in [whiffDataRighty, whiffDataLefty]:
print('00', DF['Count_00'].corr(DF['swing_prob']))
print('01', DF['Count_01'].corr(DF['swing_prob']))
print('02', DF['Count_02'].corr(DF['swing_prob']))
print('10', DF['Count_10'].corr(DF['swing_prob']))
print('11', DF['Count_11'].corr(DF['swing_prob']))
print('12', DF['Count_12'].corr(DF['swing_prob']))
print('20', DF['Count_20'].corr(DF['swing_prob']))
print('21', DF['Count_21'].corr(DF['swing_prob']))
print('22', DF['Count_22'].corr(DF['swing_prob']))
print('30', DF['Count_30'].corr(DF['swing_prob']))
print('31', DF['Count_31'].corr(DF['swing_prob']))
print('32', DF['Count_32'].corr(DF['swing_prob']))
print('>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<')
## Hard to "control" count, but this analysis will be woven into conclusions
#%%
####################################
### PLATE SIDE BASELINE ANALYSIS ###
####################################
for threshhold in list(np.linspace(-3,3,100)):
avg = whiffDataRighty[abs(whiffDataRighty.PlateSide - threshhold) < .2]['swing_prob'].mean()
if noisy:
print(threshhold, avg)
## Right: Range of -0.4 to 0.4 for swing prob
for threshhold in list(np.linspace(-2.5,3.5,100)):
avg = whiffDataLefty[abs(whiffDataLefty.PlateSide - threshhold) < .2]['swing_prob'].mean()
if noisy:
print(threshhold, avg)
## Right: Range of -0.5 to 0.2 for swing prob
for threshhold in list(np.linspace(-3,3,100)):
avg = whiffDataRighty[abs(whiffDataRighty.PlateSide - threshhold) < .2]['whiff_prob'].mean()
if noisy:
print(threshhold, avg)
## Right: Range of -0.5 to 1.1 for whiff prob
for threshhold in list(np.linspace(-2.5,3.5,100)):
avg = whiffDataLefty[abs(whiffDataLefty.PlateSide - threshhold) < .2]['whiff_prob'].mean()
if noisy:
print(threshhold, avg)
## Right: Range of -0.25 to 1.25 for whiff prob
#%%
##########################################
### SWING PROB ANALYSIS - PLATE SIDE R ###
##########################################
## Plate Side Correlations
if noisy:
print(whiffModelData['PlateSide'].corr(whiffModelData['swing_prob']))
print('Right', whiffDataRighty['PlateSide'].corr(whiffDataRighty['swing_prob']))
print('Left', whiffDataLefty['PlateSide'].corr(whiffDataLefty['swing_prob']))
### Splitting By Right vs Left Side Batters
### Plate Side, Righty ###
whiffDataRighty = whiffModelData[whiffModelData.BatterSide_Right == 1]
### Generate Baseline Model
## Started off with all variables
varsToInclude = ['Inning', 'PAofInning', 'ReleaseSpeed', 'InducedVertBreak', 'HorzBreak',
'ReleaseHeight', 'ReleaseSide', 'Extension', 'PlateHeight', 'PlateSide',
'SpinRate', 'SpinAxis', 'swing_prob',
'BatterSide_Left',
'BatterSide_Right', 'PitchType_CHANGEUP', 'PitchType_FASTBALL',
'PitchType_SLIDER', 'Count_00', 'Count_01', 'Count_02', 'Count_10',
'Count_11', 'Count_12', 'Count_20', 'Count_21', 'Count_22', 'Count_30',
'Count_31', 'Count_32']
## These were determined using backwards selection
varsToInclude = ['ReleaseSpeed', 'InducedVertBreak', 'HorzBreak', 'PlateHeight', 'SpinRate', 'SpinAxis', 'swing_prob', 'PlateSide']
## Baseline Model (with all variables included)
## Generate Model
X = whiffDataRighty[varsToInclude]
y = whiffDataRighty['whiff_prob'].values.reshape(-1,1)
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 25)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
## Score Model
print('BASELINE MODEL SCORE (R2) :', regressor.score(x_test,y_test))
print('>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<')
### Simulation - Plate Side, Righty
avgs = []
for iter in tqdm([1,2,3,4,5]):
deltas = []
for seed in list(range(1,101)):
seed = random.randint(1,1000)
## Generate Model
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = seed)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
x_testDF = pd.DataFrame(x_test)
x_testDF.columns = varsToInclude
## Generate Predictions
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1, this methods retains the distribution
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
baselineAvg = sum(scaledVals) / len(scaledVals)
### Simulation - Change Values in Prediction Set
x_testDF['PlateSide'] = random.uniform(-0.5, 1.1)
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
changedAvg = sum(scaledVals) / len(scaledVals)
## We use percent change here because the actual prediction values have lost meaning
## One, because the prediction range is wider than the actual possible range of values (infinite range vs [0,1])
## Two, because we have normalized the values
delta = (changedAvg - baselineAvg) / baselineAvg
deltas.append(delta)
deltaAvg = sum(deltas) / len(deltas) * 100
avgs.append(deltaAvg)
print(iter, ' Change Avg: ', deltaAvg)
print(sum(avgs) / len(avgs))
## Average improve of x16% in Whiff Rate
#%%
##########################################
### SWING PROB ANALYSIS - PLATE SIDE L ###
##########################################
### Splitting By Right vs Left Side Batters
### Plate Side, Lefty ###
whiffDataLefty = whiffModelData[whiffModelData.BatterSide_Left == 1]
### Generate Baseline Model
## Started off with all variables
varsToInclude = ['Inning', 'PAofInning', 'ReleaseSpeed', 'InducedVertBreak', 'HorzBreak',
'ReleaseHeight', 'ReleaseSide', 'Extension', 'PlateHeight', 'PlateSide',
'SpinRate', 'SpinAxis', 'swing_prob',
'BatterSide_Left',
'BatterSide_Right', 'PitchType_CHANGEUP', 'PitchType_FASTBALL',
'PitchType_SLIDER', 'Count_00', 'Count_01', 'Count_02', 'Count_10',
'Count_11', 'Count_12', 'Count_20', 'Count_21', 'Count_22', 'Count_30',
'Count_31', 'Count_32']
## These were determined using backwards selection
varsToInclude = ['ReleaseSpeed', 'InducedVertBreak', 'HorzBreak', 'PlateHeight', 'SpinRate', 'SpinAxis', 'swing_prob', 'PlateSide']
## Baseline Model (with all variables included)
## Generate Model
X = whiffDataLefty[varsToInclude]
y = whiffDataLefty['whiff_prob'].values.reshape(-1,1)
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 25)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
## Score Model
print('BASELINE MODEL SCORE (R2) :', regressor.score(x_test,y_test))
print('>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<')
### Simulation - Plate Side, Righty
avgs = []
for iter in tqdm([1,2,3,4,5]):
deltas = []
for seed in list(range(1,101)):
seed = random.randint(1,1000)
## Generate Model
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = seed)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
x_testDF = pd.DataFrame(x_test)
x_testDF.columns = varsToInclude
## Generate Predictions
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1, this methods retains the distribution
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
baselineAvg = sum(scaledVals) / len(scaledVals)
### Simulation - Change Values in Prediction Set
x_testDF['PlateSide'] = random.uniform(0.25,1.25)
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
changedAvg = sum(scaledVals) / len(scaledVals)
## We use percent change here because the actual prediction values have lost meaning
## One, because the prediction range is wider than the actual possible range of values (infinite range vs [0,1])
## Two, because we have normalized the values
delta = (changedAvg - baselineAvg) / baselineAvg
deltas.append(delta)
deltaAvg = sum(deltas) / len(deltas) * 100
avgs.append(deltaAvg)
print(iter, ' Change Avg: ', deltaAvg)
print(sum(avgs) / len(avgs))
## Average improvement of x6%
##################################################################
### Weighted Average Improvement for Lefty and Righty Datasets ###
##################################################################
wAvg = ((16 * len(whiffDataRighty)) + (6 * len(whiffDataLefty))) / (len(whiffDataRighty) + len(whiffDataLefty))
## OVERALL: x13.4% improvement
#%%
#########################################
### PLATE SIDE ANALYSIS - ALTERNATIVE ###
#########################################
## Secondary analysis to corroborate trends and quantifications
## Reasoning behind this is because previous analysis of Plate Side was WRT Swing Prob, not Whiff Prob
## Plate Side Right
whiffDataRighty = whiffData[whiffData.BatterSide == 'Right']
## Understand the distribution (previously confirmed to be normal)
if noisy:
print(whiffDataRighty['PlateSide'].mean())
print(whiffDataRighty['PlateSide'].std())
avgs = []
avgswo = []
for threshhold in list(np.linspace(-3,3,100)):
avg = whiffDataRighty[abs(whiffDataRighty.PlateSide - threshhold) < .2]['whiff_prob'].mean()
if math.isnan(avg):
continue
if threshhold > -0.5 and threshhold < 1.1:
avgs.append(avg)
else:
avgswo.append(avg)
#print(threshhold, '--->', avg)
print('Without Optimal Range :', sum(avgswo) / len(avgswo))
print('With Optimal Range :', sum(avgs) / len(avgs))
## Findings: Righty Optimal Range: -0.5 to 1.1 feet
## Plate Side Left
whiffDataLefty = whiffData[whiffData.BatterSide == 'Left']
## Understand the distribution (previously confirmed to be normal)
if noisy:
print(whiffDataLefty['PlateSide'].mean())
print(whiffDataLefty['PlateSide'].std())
avgs = []
avgswo = []
for threshhold in list(np.linspace(-3,3,100)):
avg = whiffDataLefty[abs(whiffDataLefty.PlateSide - threshhold) < .2]['whiff_prob'].mean()
if math.isnan(avg):
continue
if threshhold > 0.25 and threshhold < 1.25:
avgs.append(avg)
else:
avgswo.append(avg)
#print(threshhold, '--->', avg)
print('Without Optimal Range :', sum(avgswo) / len(avgswo))
print('With Optimal Range :', sum(avgs) / len(avgs))
## Findings: Lefty Optimal Range: 0.25 to 1.25 feet
#%%
###############################################################
### SIMULATION WITH OPTIMAL PLATE SIDE AND PLATE HEIGHT - R ###
###############################################################
### Splitting By Right vs Left Side Batters
### Plate Side, Righty ###
whiffDataRighty = whiffModelData[whiffModelData.BatterSide_Right == 1]
### Generate Baseline Model
## Started off with all variables
varsToInclude = ['Inning', 'PAofInning', 'ReleaseSpeed', 'InducedVertBreak', 'HorzBreak',
'ReleaseHeight', 'ReleaseSide', 'Extension', 'PlateHeight', 'PlateSide',
'SpinRate', 'SpinAxis', 'swing_prob',
'BatterSide_Left',
'BatterSide_Right', 'PitchType_CHANGEUP', 'PitchType_FASTBALL',
'PitchType_SLIDER', 'Count_00', 'Count_01', 'Count_02', 'Count_10',
'Count_11', 'Count_12', 'Count_20', 'Count_21', 'Count_22', 'Count_30',
'Count_31', 'Count_32']
## These were determined using backwards selection
varsToInclude = ['ReleaseSpeed', 'InducedVertBreak', 'HorzBreak', 'PlateHeight', 'SpinRate', 'SpinAxis', 'swing_prob', 'PlateSide']
## Baseline Model (with all variables included)
## Generate Model
X = whiffDataRighty[varsToInclude]
y = whiffDataRighty['whiff_prob'].values.reshape(-1,1)
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 25)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
## Score Model
print('BASELINE MODEL SCORE (R2) :', regressor.score(x_test,y_test))
print('>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<')
### Simulation - Plate Side, Righty
avgs = []
for iter in tqdm([1,2,3,4,5]):
deltas = []
for seed in list(range(1,101)):
seed = random.randint(1,1000)
## Generate Model
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = seed)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
x_testDF = pd.DataFrame(x_test)
x_testDF.columns = varsToInclude
## Generate Predictions
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1, this methods retains the distribution
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
baselineAvg = sum(scaledVals) / len(scaledVals)
### Simulation - Change Values in Prediction Set
x_testDF['PlateSide'] = random.uniform(-0.5, 1.1)
x_testDF['PlateHeight'] = random.uniform(0.9,1.1)
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
changedAvg = sum(scaledVals) / len(scaledVals)
## We use percent change here because the actual prediction values have lost meaning
## One, because the prediction range is wider than the actual possible range of values (infinite range vs [0,1])
## Two, because we have normalized the values
delta = (changedAvg - baselineAvg) / baselineAvg
deltas.append(delta)
deltaAvg = sum(deltas) / len(deltas) * 100
avgs.append(deltaAvg)
print(iter, ' Change Avg: ', deltaAvg)
print(sum(avgs) / len(avgs))
#%%
###############################################################
### SIMULATION WITH OPTIMAL PLATE SIDE AND PLATE HEIGHT - L ###
###############################################################
### Splitting By Right vs Left Side Batters
### Plate Side, Lefty ###
whiffDataLefty = whiffModelData[whiffModelData.BatterSide_Left == 1]
### Generate Baseline Model
## Started off with all variables
varsToInclude = ['Inning', 'PAofInning', 'ReleaseSpeed', 'InducedVertBreak', 'HorzBreak',
'ReleaseHeight', 'ReleaseSide', 'Extension', 'PlateHeight', 'PlateSide',
'SpinRate', 'SpinAxis', 'swing_prob',
'BatterSide_Left',
'BatterSide_Right', 'PitchType_CHANGEUP', 'PitchType_FASTBALL',
'PitchType_SLIDER', 'Count_00', 'Count_01', 'Count_02', 'Count_10',
'Count_11', 'Count_12', 'Count_20', 'Count_21', 'Count_22', 'Count_30',
'Count_31', 'Count_32']
## These were determined using backwards selection
varsToInclude = ['ReleaseSpeed', 'InducedVertBreak', 'HorzBreak', 'PlateHeight', 'SpinRate', 'SpinAxis', 'swing_prob', 'PlateSide']
## Baseline Model (with all variables included)
## Generate Model
X = whiffDataLefty[varsToInclude]
y = whiffDataLefty['whiff_prob'].values.reshape(-1,1)
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 25)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
## Score Model
print('BASELINE MODEL SCORE (R2) :', regressor.score(x_test,y_test))
print('>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<')
### Simulation - Plate Side, Righty
avgs = []
for iter in tqdm([1,2,3,4,5]):
deltas = []
for seed in list(range(1,101)):
seed = random.randint(1,1000)
## Generate Model
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = seed)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
x_testDF = pd.DataFrame(x_test)
x_testDF.columns = varsToInclude
## Generate Predictions
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1, this methods retains the distribution
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
baselineAvg = sum(scaledVals) / len(scaledVals)
### Simulation - Change Values in Prediction Set
x_testDF['PlateSide'] = random.uniform(-0.5,1.1)
x_testDF['PlateHeight'] = random.uniform(0.9,1.1)
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
changedAvg = sum(scaledVals) / len(scaledVals)
## We use percent change here because the actual prediction values have lost meaning
## One, because the prediction range is wider than the actual possible range of values (infinite range vs [0,1])
## Two, because we have normalized the values
delta = (changedAvg - baselineAvg) / baselineAvg
deltas.append(delta)
deltaAvg = sum(deltas) / len(deltas) * 100
avgs.append(deltaAvg)
print(iter, ' Change Avg: ', deltaAvg)
print(sum(avgs) / len(avgs))
## Average Improvement 28%
########################
### Weighted Average ###
########################
wAvg = ((25 * len(whiffDataRighty)) + (28 * len(whiffDataLefty))) / (len(whiffDataRighty) + len(whiffDataLefty))
## The data confirms that when combined, these changes increase whiff prob by x26%
#%%
###################################
### DISTRIBUTION VISUALIZATIONS ###
###################################
## Plate Side
whiffDataLefty['PlateSide'].hist(bins = 30)
whiffDataRighty['PlateSide'].hist(bins = 30)
## Plate Height
whiffData['PlateHeight'].hist(bins = 30)