-
Notifications
You must be signed in to change notification settings - Fork 0
/
fftpack51.ftn90
15110 lines (13969 loc) · 415 KB
/
fftpack51.ftn90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
subroutine c1f2kb ( ido, l1, na, cc, in1, ch, in2, wa )
!*****************************************************************************80
!
!! C1F2KB is an FFTPACK5.1 auxiliary routine.
!
! License:
!
! Licensed under the GNU General Public License (GPL).
! Copyright (C) 1995-2004, Scientific Computing Division,
! University Corporation for Atmospheric Research
!
! Modified:
!
! 15 November 2011
!
! Author:
!
! Original FORTRAN77 version by Paul Swarztrauber, Richard Valent.
! FORTRAN90 version by John Burkardt.
!
! Reference:
!
! Paul Swarztrauber,
! Vectorizing the Fast Fourier Transforms,
! in Parallel Computations,
! edited by G. Rodrigue,
! Academic Press, 1982.
!
! Paul Swarztrauber,
! Fast Fourier Transform Algorithms for Vector Computers,
! Parallel Computing, pages 45-63, 1984.
!
! Parameters:
!
implicit none
integer ( kind = 4 ) ido
integer ( kind = 4 ) in1
integer ( kind = 4 ) in2
integer ( kind = 4 ) l1
real ( kind = 8 ) cc(in1,l1,ido,2)
real ( kind = 8 ) ch(in2,l1,2,ido)
real ( kind = 8 ) chold1
real ( kind = 8 ) chold2
integer ( kind = 4 ) i
integer ( kind = 4 ) k
integer ( kind = 4 ) na
real ( kind = 8 ) ti2
real ( kind = 8 ) tr2
real ( kind = 8 ) wa(ido,1,2)
if ( ido <= 1 .and. na /= 1 ) then
do k = 1, l1
chold1 = cc(1,k,1,1)+cc(1,k,1,2)
cc(1,k,1,2) = cc(1,k,1,1)-cc(1,k,1,2)
cc(1,k,1,1) = chold1
chold2 = cc(2,k,1,1)+cc(2,k,1,2)
cc(2,k,1,2) = cc(2,k,1,1)-cc(2,k,1,2)
cc(2,k,1,1) = chold2
end do
return
end if
do k = 1, l1
ch(1,k,1,1) = cc(1,k,1,1)+cc(1,k,1,2)
ch(1,k,2,1) = cc(1,k,1,1)-cc(1,k,1,2)
ch(2,k,1,1) = cc(2,k,1,1)+cc(2,k,1,2)
ch(2,k,2,1) = cc(2,k,1,1)-cc(2,k,1,2)
end do
do i = 2, ido
do k = 1, l1
ch(1,k,1,i) = cc(1,k,i,1)+cc(1,k,i,2)
tr2 = cc(1,k,i,1)-cc(1,k,i,2)
ch(2,k,1,i) = cc(2,k,i,1)+cc(2,k,i,2)
ti2 = cc(2,k,i,1)-cc(2,k,i,2)
ch(2,k,2,i) = wa(i,1,1)*ti2+wa(i,1,2)*tr2
ch(1,k,2,i) = wa(i,1,1)*tr2-wa(i,1,2)*ti2
end do
end do
return
end
subroutine c1f2kf ( ido, l1, na, cc, in1, ch, in2, wa )
!*****************************************************************************80
!
!! C1F2KF is an FFTPACK5.1 auxiliary routine.
!
! License:
!
! Licensed under the GNU General Public License (GPL).
! Copyright (C) 1995-2004, Scientific Computing Division,
! University Corporation for Atmospheric Research
!
! Modified:
!
! 13 May 2013
!
! Author:
!
! Original FORTRAN77 version by Paul Swarztrauber, Richard Valent.
! FORTRAN90 version by John Burkardt.
!
! Reference:
!
! Paul Swarztrauber,
! Vectorizing the Fast Fourier Transforms,
! in Parallel Computations,
! edited by G. Rodrigue,
! Academic Press, 1982.
!
! Paul Swarztrauber,
! Fast Fourier Transform Algorithms for Vector Computers,
! Parallel Computing, pages 45-63, 1984.
!
! Parameters:
!
implicit none
integer ( kind = 4 ) ido
integer ( kind = 4 ) in1
integer ( kind = 4 ) in2
integer ( kind = 4 ) l1
real ( kind = 8 ) cc(in1,l1,ido,2)
real ( kind = 8 ) ch(in2,l1,2,ido)
real ( kind = 8 ) chold1
real ( kind = 8 ) chold2
integer ( kind = 4 ) i
integer ( kind = 4 ) k
integer ( kind = 4 ) na
real ( kind = 8 ) sn
real ( kind = 8 ) ti2
real ( kind = 8 ) tr2
real ( kind = 8 ) wa(ido,1,2)
if ( ido <= 1 ) then
sn = 1.0D+00 / real ( 2 * l1, kind = 8 )
if ( na == 1 ) then
do k = 1, l1
ch(1,k,1,1) = sn*(cc(1,k,1,1)+cc(1,k,1,2))
ch(1,k,2,1) = sn*(cc(1,k,1,1)-cc(1,k,1,2))
ch(2,k,1,1) = sn*(cc(2,k,1,1)+cc(2,k,1,2))
ch(2,k,2,1) = sn*(cc(2,k,1,1)-cc(2,k,1,2))
end do
else
do k = 1, l1
chold1 = sn*(cc(1,k,1,1)+cc(1,k,1,2))
cc(1,k,1,2) = sn*(cc(1,k,1,1)-cc(1,k,1,2))
cc(1,k,1,1) = chold1
chold2 = sn*(cc(2,k,1,1)+cc(2,k,1,2))
cc(2,k,1,2) = sn*(cc(2,k,1,1)-cc(2,k,1,2))
cc(2,k,1,1) = chold2
end do
end if
else
do k = 1, l1
ch(1,k,1,1) = cc(1,k,1,1)+cc(1,k,1,2)
ch(1,k,2,1) = cc(1,k,1,1)-cc(1,k,1,2)
ch(2,k,1,1) = cc(2,k,1,1)+cc(2,k,1,2)
ch(2,k,2,1) = cc(2,k,1,1)-cc(2,k,1,2)
end do
do i = 2, ido
do k = 1, l1
ch(1,k,1,i) = cc(1,k,i,1)+cc(1,k,i,2)
tr2 = cc(1,k,i,1)-cc(1,k,i,2)
ch(2,k,1,i) = cc(2,k,i,1)+cc(2,k,i,2)
ti2 = cc(2,k,i,1)-cc(2,k,i,2)
ch(2,k,2,i) = wa(i,1,1)*ti2-wa(i,1,2)*tr2
ch(1,k,2,i) = wa(i,1,1)*tr2+wa(i,1,2)*ti2
end do
end do
end if
return
end
subroutine c1f3kb ( ido, l1, na, cc, in1, ch, in2, wa )
!*****************************************************************************80
!
!! C1F3KB is an FFTPACK5.1 auxiliary routine.
!
! License:
!
! Licensed under the GNU General Public License (GPL).
! Copyright (C) 1995-2004, Scientific Computing Division,
! University Corporation for Atmospheric Research
!
! Modified:
!
! 13 May 2013
!
! Author:
!
! Original FORTRAN77 version by Paul Swarztrauber, Richard Valent.
! FORTRAN90 version by John Burkardt.
!
! Reference:
!
! Paul Swarztrauber,
! Vectorizing the Fast Fourier Transforms,
! in Parallel Computations,
! edited by G. Rodrigue,
! Academic Press, 1982.
!
! Paul Swarztrauber,
! Fast Fourier Transform Algorithms for Vector Computers,
! Parallel Computing, pages 45-63, 1984.
!
! Parameters:
!
implicit none
integer ( kind = 4 ) ido
integer ( kind = 4 ) in1
integer ( kind = 4 ) in2
integer ( kind = 4 ) l1
real ( kind = 8 ) cc(in1,l1,ido,3)
real ( kind = 8 ) ch(in2,l1,3,ido)
real ( kind = 8 ) ci2
real ( kind = 8 ) ci3
real ( kind = 8 ) cr2
real ( kind = 8 ) cr3
real ( kind = 8 ) di2
real ( kind = 8 ) di3
real ( kind = 8 ) dr2
real ( kind = 8 ) dr3
integer ( kind = 4 ) i
integer ( kind = 4 ) k
integer ( kind = 4 ) na
real ( kind = 8 ), parameter :: taui = 0.866025403784439D+00
real ( kind = 8 ), parameter :: taur = -0.5D+00
real ( kind = 8 ) ti2
real ( kind = 8 ) tr2
real ( kind = 8 ) wa(ido,2,2)
if ( ido <= 1 .and. na /= 1 ) then
do k = 1, l1
tr2 = cc(1,k,1,2)+cc(1,k,1,3)
cr2 = cc(1,k,1,1)+taur*tr2
cc(1,k,1,1) = cc(1,k,1,1)+tr2
ti2 = cc(2,k,1,2)+cc(2,k,1,3)
ci2 = cc(2,k,1,1)+taur*ti2
cc(2,k,1,1) = cc(2,k,1,1)+ti2
cr3 = taui*(cc(1,k,1,2)-cc(1,k,1,3))
ci3 = taui*(cc(2,k,1,2)-cc(2,k,1,3))
cc(1,k,1,2) = cr2-ci3
cc(1,k,1,3) = cr2+ci3
cc(2,k,1,2) = ci2+cr3
cc(2,k,1,3) = ci2-cr3
end do
else
do k = 1, l1
tr2 = cc(1,k,1,2)+cc(1,k,1,3)
cr2 = cc(1,k,1,1)+taur*tr2
ch(1,k,1,1) = cc(1,k,1,1)+tr2
ti2 = cc(2,k,1,2)+cc(2,k,1,3)
ci2 = cc(2,k,1,1)+taur*ti2
ch(2,k,1,1) = cc(2,k,1,1)+ti2
cr3 = taui*(cc(1,k,1,2)-cc(1,k,1,3))
ci3 = taui*(cc(2,k,1,2)-cc(2,k,1,3))
ch(1,k,2,1) = cr2-ci3
ch(1,k,3,1) = cr2+ci3
ch(2,k,2,1) = ci2+cr3
ch(2,k,3,1) = ci2-cr3
end do
do i = 2, ido
do k = 1, l1
tr2 = cc(1,k,i,2)+cc(1,k,i,3)
cr2 = cc(1,k,i,1)+taur*tr2
ch(1,k,1,i) = cc(1,k,i,1)+tr2
ti2 = cc(2,k,i,2)+cc(2,k,i,3)
ci2 = cc(2,k,i,1)+taur*ti2
ch(2,k,1,i) = cc(2,k,i,1)+ti2
cr3 = taui*(cc(1,k,i,2)-cc(1,k,i,3))
ci3 = taui*(cc(2,k,i,2)-cc(2,k,i,3))
dr2 = cr2-ci3
dr3 = cr2+ci3
di2 = ci2+cr3
di3 = ci2-cr3
ch(2,k,2,i) = wa(i,1,1)*di2+wa(i,1,2)*dr2
ch(1,k,2,i) = wa(i,1,1)*dr2-wa(i,1,2)*di2
ch(2,k,3,i) = wa(i,2,1)*di3+wa(i,2,2)*dr3
ch(1,k,3,i) = wa(i,2,1)*dr3-wa(i,2,2)*di3
end do
end do
end if
return
end
subroutine c1f3kf ( ido, l1, na, cc, in1, ch, in2, wa )
!*****************************************************************************80
!
!! C1F3KF is an FFTPACK5.1 auxiliary routine.
!
! License:
!
! Licensed under the GNU General Public License (GPL).
! Copyright (C) 1995-2004, Scientific Computing Division,
! University Corporation for Atmospheric Research
!
! Modified:
!
! 13 May 2013
!
! Author:
!
! Original FORTRAN77 version by Paul Swarztrauber, Richard Valent.
! FORTRAN90 version by John Burkardt.
!
! Reference:
!
! Paul Swarztrauber,
! Vectorizing the Fast Fourier Transforms,
! in Parallel Computations,
! edited by G. Rodrigue,
! Academic Press, 1982.
!
! Paul Swarztrauber,
! Fast Fourier Transform Algorithms for Vector Computers,
! Parallel Computing, pages 45-63, 1984.
!
! Parameters:
!
implicit none
integer ( kind = 4 ) ido
integer ( kind = 4 ) in1
integer ( kind = 4 ) in2
integer ( kind = 4 ) l1
real ( kind = 8 ) cc(in1,l1,ido,3)
real ( kind = 8 ) ch(in2,l1,3,ido)
real ( kind = 8 ) ci2
real ( kind = 8 ) ci3
real ( kind = 8 ) cr2
real ( kind = 8 ) cr3
real ( kind = 8 ) di2
real ( kind = 8 ) di3
real ( kind = 8 ) dr2
real ( kind = 8 ) dr3
integer ( kind = 4 ) i
integer ( kind = 4 ) k
integer ( kind = 4 ) na
real ( kind = 8 ) sn
real ( kind = 8 ), parameter :: taui = -0.866025403784439D+00
real ( kind = 8 ), parameter :: taur = -0.5D+00
real ( kind = 8 ) ti2
real ( kind = 8 ) tr2
real ( kind = 8 ) wa(ido,2,2)
if ( ido <= 1 ) then
sn = 1.0D+00 / real ( 3 * l1, kind = 8 )
if ( na /= 1 ) then
do k = 1, l1
tr2 = cc(1,k,1,2)+cc(1,k,1,3)
cr2 = cc(1,k,1,1)+taur*tr2
cc(1,k,1,1) = sn*(cc(1,k,1,1)+tr2)
ti2 = cc(2,k,1,2)+cc(2,k,1,3)
ci2 = cc(2,k,1,1)+taur*ti2
cc(2,k,1,1) = sn*(cc(2,k,1,1)+ti2)
cr3 = taui*(cc(1,k,1,2)-cc(1,k,1,3))
ci3 = taui*(cc(2,k,1,2)-cc(2,k,1,3))
cc(1,k,1,2) = sn*(cr2-ci3)
cc(1,k,1,3) = sn*(cr2+ci3)
cc(2,k,1,2) = sn*(ci2+cr3)
cc(2,k,1,3) = sn*(ci2-cr3)
end do
else
do k = 1, l1
tr2 = cc(1,k,1,2)+cc(1,k,1,3)
cr2 = cc(1,k,1,1)+taur*tr2
ch(1,k,1,1) = sn*(cc(1,k,1,1)+tr2)
ti2 = cc(2,k,1,2)+cc(2,k,1,3)
ci2 = cc(2,k,1,1)+taur*ti2
ch(2,k,1,1) = sn*(cc(2,k,1,1)+ti2)
cr3 = taui*(cc(1,k,1,2)-cc(1,k,1,3))
ci3 = taui*(cc(2,k,1,2)-cc(2,k,1,3))
ch(1,k,2,1) = sn*(cr2-ci3)
ch(1,k,3,1) = sn*(cr2+ci3)
ch(2,k,2,1) = sn*(ci2+cr3)
ch(2,k,3,1) = sn*(ci2-cr3)
end do
end if
else
do k = 1, l1
tr2 = cc(1,k,1,2)+cc(1,k,1,3)
cr2 = cc(1,k,1,1)+taur*tr2
ch(1,k,1,1) = cc(1,k,1,1)+tr2
ti2 = cc(2,k,1,2)+cc(2,k,1,3)
ci2 = cc(2,k,1,1)+taur*ti2
ch(2,k,1,1) = cc(2,k,1,1)+ti2
cr3 = taui*(cc(1,k,1,2)-cc(1,k,1,3))
ci3 = taui*(cc(2,k,1,2)-cc(2,k,1,3))
ch(1,k,2,1) = cr2-ci3
ch(1,k,3,1) = cr2+ci3
ch(2,k,2,1) = ci2+cr3
ch(2,k,3,1) = ci2-cr3
end do
do i = 2, ido
do k = 1, l1
tr2 = cc(1,k,i,2)+cc(1,k,i,3)
cr2 = cc(1,k,i,1)+taur*tr2
ch(1,k,1,i) = cc(1,k,i,1)+tr2
ti2 = cc(2,k,i,2)+cc(2,k,i,3)
ci2 = cc(2,k,i,1)+taur*ti2
ch(2,k,1,i) = cc(2,k,i,1)+ti2
cr3 = taui*(cc(1,k,i,2)-cc(1,k,i,3))
ci3 = taui*(cc(2,k,i,2)-cc(2,k,i,3))
dr2 = cr2-ci3
dr3 = cr2+ci3
di2 = ci2+cr3
di3 = ci2-cr3
ch(2,k,2,i) = wa(i,1,1)*di2-wa(i,1,2)*dr2
ch(1,k,2,i) = wa(i,1,1)*dr2+wa(i,1,2)*di2
ch(2,k,3,i) = wa(i,2,1)*di3-wa(i,2,2)*dr3
ch(1,k,3,i) = wa(i,2,1)*dr3+wa(i,2,2)*di3
end do
end do
end if
return
end
subroutine c1f4kb ( ido, l1, na, cc, in1, ch, in2, wa )
!*****************************************************************************80
!
!! C1F4KB is an FFTPACK5.1 auxiliary routine.
!
! License:
!
! Licensed under the GNU General Public License (GPL).
! Copyright (C) 1995-2004, Scientific Computing Division,
! University Corporation for Atmospheric Research
!
! Modified:
!
! 15 November 2011
!
! Author:
!
! Original FORTRAN77 version by Paul Swarztrauber, Richard Valent.
! FORTRAN90 version by John Burkardt.
!
! Reference:
!
! Paul Swarztrauber,
! Vectorizing the Fast Fourier Transforms,
! in Parallel Computations,
! edited by G. Rodrigue,
! Academic Press, 1982.
!
! Paul Swarztrauber,
! Fast Fourier Transform Algorithms for Vector Computers,
! Parallel Computing, pages 45-63, 1984.
!
! Parameters:
!
implicit none
integer ( kind = 4 ) ido
integer ( kind = 4 ) in1
integer ( kind = 4 ) in2
integer ( kind = 4 ) l1
real ( kind = 8 ) cc(in1,l1,ido,4)
real ( kind = 8 ) ch(in2,l1,4,ido)
real ( kind = 8 ) ci2
real ( kind = 8 ) ci3
real ( kind = 8 ) ci4
real ( kind = 8 ) cr2
real ( kind = 8 ) cr3
real ( kind = 8 ) cr4
integer ( kind = 4 ) i
integer ( kind = 4 ) k
integer ( kind = 4 ) na
real ( kind = 8 ) ti1
real ( kind = 8 ) ti2
real ( kind = 8 ) ti3
real ( kind = 8 ) ti4
real ( kind = 8 ) tr1
real ( kind = 8 ) tr2
real ( kind = 8 ) tr3
real ( kind = 8 ) tr4
real ( kind = 8 ) wa(ido,3,2)
if ( ido <= 1 .and. na /= 1 ) then
do k = 1, l1
ti1 = cc(2,k,1,1)-cc(2,k,1,3)
ti2 = cc(2,k,1,1)+cc(2,k,1,3)
tr4 = cc(2,k,1,4)-cc(2,k,1,2)
ti3 = cc(2,k,1,2)+cc(2,k,1,4)
tr1 = cc(1,k,1,1)-cc(1,k,1,3)
tr2 = cc(1,k,1,1)+cc(1,k,1,3)
ti4 = cc(1,k,1,2)-cc(1,k,1,4)
tr3 = cc(1,k,1,2)+cc(1,k,1,4)
cc(1,k,1,1) = tr2+tr3
cc(1,k,1,3) = tr2-tr3
cc(2,k,1,1) = ti2+ti3
cc(2,k,1,3) = ti2-ti3
cc(1,k,1,2) = tr1+tr4
cc(1,k,1,4) = tr1-tr4
cc(2,k,1,2) = ti1+ti4
cc(2,k,1,4) = ti1-ti4
end do
else
do k = 1, l1
ti1 = cc(2,k,1,1)-cc(2,k,1,3)
ti2 = cc(2,k,1,1)+cc(2,k,1,3)
tr4 = cc(2,k,1,4)-cc(2,k,1,2)
ti3 = cc(2,k,1,2)+cc(2,k,1,4)
tr1 = cc(1,k,1,1)-cc(1,k,1,3)
tr2 = cc(1,k,1,1)+cc(1,k,1,3)
ti4 = cc(1,k,1,2)-cc(1,k,1,4)
tr3 = cc(1,k,1,2)+cc(1,k,1,4)
ch(1,k,1,1) = tr2+tr3
ch(1,k,3,1) = tr2-tr3
ch(2,k,1,1) = ti2+ti3
ch(2,k,3,1) = ti2-ti3
ch(1,k,2,1) = tr1+tr4
ch(1,k,4,1) = tr1-tr4
ch(2,k,2,1) = ti1+ti4
ch(2,k,4,1) = ti1-ti4
end do
do i = 2, ido
do k = 1, l1
ti1 = cc(2,k,i,1)-cc(2,k,i,3)
ti2 = cc(2,k,i,1)+cc(2,k,i,3)
ti3 = cc(2,k,i,2)+cc(2,k,i,4)
tr4 = cc(2,k,i,4)-cc(2,k,i,2)
tr1 = cc(1,k,i,1)-cc(1,k,i,3)
tr2 = cc(1,k,i,1)+cc(1,k,i,3)
ti4 = cc(1,k,i,2)-cc(1,k,i,4)
tr3 = cc(1,k,i,2)+cc(1,k,i,4)
ch(1,k,1,i) = tr2+tr3
cr3 = tr2-tr3
ch(2,k,1,i) = ti2+ti3
ci3 = ti2-ti3
cr2 = tr1+tr4
cr4 = tr1-tr4
ci2 = ti1+ti4
ci4 = ti1-ti4
ch(1,k,2,i) = wa(i,1,1)*cr2-wa(i,1,2)*ci2
ch(2,k,2,i) = wa(i,1,1)*ci2+wa(i,1,2)*cr2
ch(1,k,3,i) = wa(i,2,1)*cr3-wa(i,2,2)*ci3
ch(2,k,3,i) = wa(i,2,1)*ci3+wa(i,2,2)*cr3
ch(1,k,4,i) = wa(i,3,1)*cr4-wa(i,3,2)*ci4
ch(2,k,4,i) = wa(i,3,1)*ci4+wa(i,3,2)*cr4
end do
end do
end if
return
end
subroutine c1f4kf ( ido, l1, na, cc, in1, ch, in2, wa )
!*****************************************************************************80
!
!! C1F4KF is an FFTPACK5.1 auxiliary routine.
!
! License:
!
! Licensed under the GNU General Public License (GPL).
! Copyright (C) 1995-2004, Scientific Computing Division,
! University Corporation for Atmospheric Research
!
! Modified:
!
! 15 November 2011
!
! Author:
!
! Original FORTRAN77 version by Paul Swarztrauber, Richard Valent.
! FORTRAN90 version by John Burkardt.
!
! Reference:
!
! Paul Swarztrauber,
! Vectorizing the Fast Fourier Transforms,
! in Parallel Computations,
! edited by G. Rodrigue,
! Academic Press, 1982.
!
! Paul Swarztrauber,
! Fast Fourier Transform Algorithms for Vector Computers,
! Parallel Computing, pages 45-63, 1984.
!
! Parameters:
!
implicit none
integer ( kind = 4 ) ido
integer ( kind = 4 ) in1
integer ( kind = 4 ) in2
integer ( kind = 4 ) l1
real ( kind = 8 ) cc(in1,l1,ido,4)
real ( kind = 8 ) ch(in2,l1,4,ido)
real ( kind = 8 ) ci2
real ( kind = 8 ) ci3
real ( kind = 8 ) ci4
real ( kind = 8 ) cr2
real ( kind = 8 ) cr3
real ( kind = 8 ) cr4
integer ( kind = 4 ) i
integer ( kind = 4 ) k
integer ( kind = 4 ) na
real ( kind = 8 ) sn
real ( kind = 8 ) ti1
real ( kind = 8 ) ti2
real ( kind = 8 ) ti3
real ( kind = 8 ) ti4
real ( kind = 8 ) tr1
real ( kind = 8 ) tr2
real ( kind = 8 ) tr3
real ( kind = 8 ) tr4
real ( kind = 8 ) wa(ido,3,2)
if ( ido <= 1 ) then
sn = 1.0D+00 / real ( 4 * l1, kind = 8 )
if ( na /= 1 ) then
do k = 1, l1
ti1 = cc(2,k,1,1)-cc(2,k,1,3)
ti2 = cc(2,k,1,1)+cc(2,k,1,3)
tr4 = cc(2,k,1,2)-cc(2,k,1,4)
ti3 = cc(2,k,1,2)+cc(2,k,1,4)
tr1 = cc(1,k,1,1)-cc(1,k,1,3)
tr2 = cc(1,k,1,1)+cc(1,k,1,3)
ti4 = cc(1,k,1,4)-cc(1,k,1,2)
tr3 = cc(1,k,1,2)+cc(1,k,1,4)
cc(1,k,1,1) = sn*(tr2+tr3)
cc(1,k,1,3) = sn*(tr2-tr3)
cc(2,k,1,1) = sn*(ti2+ti3)
cc(2,k,1,3) = sn*(ti2-ti3)
cc(1,k,1,2) = sn*(tr1+tr4)
cc(1,k,1,4) = sn*(tr1-tr4)
cc(2,k,1,2) = sn*(ti1+ti4)
cc(2,k,1,4) = sn*(ti1-ti4)
end do
else
do k = 1, l1
ti1 = cc(2,k,1,1)-cc(2,k,1,3)
ti2 = cc(2,k,1,1)+cc(2,k,1,3)
tr4 = cc(2,k,1,2)-cc(2,k,1,4)
ti3 = cc(2,k,1,2)+cc(2,k,1,4)
tr1 = cc(1,k,1,1)-cc(1,k,1,3)
tr2 = cc(1,k,1,1)+cc(1,k,1,3)
ti4 = cc(1,k,1,4)-cc(1,k,1,2)
tr3 = cc(1,k,1,2)+cc(1,k,1,4)
ch(1,k,1,1) = sn*(tr2+tr3)
ch(1,k,3,1) = sn*(tr2-tr3)
ch(2,k,1,1) = sn*(ti2+ti3)
ch(2,k,3,1) = sn*(ti2-ti3)
ch(1,k,2,1) = sn*(tr1+tr4)
ch(1,k,4,1) = sn*(tr1-tr4)
ch(2,k,2,1) = sn*(ti1+ti4)
ch(2,k,4,1) = sn*(ti1-ti4)
end do
end if
else
do k = 1, l1
ti1 = cc(2,k,1,1)-cc(2,k,1,3)
ti2 = cc(2,k,1,1)+cc(2,k,1,3)
tr4 = cc(2,k,1,2)-cc(2,k,1,4)
ti3 = cc(2,k,1,2)+cc(2,k,1,4)
tr1 = cc(1,k,1,1)-cc(1,k,1,3)
tr2 = cc(1,k,1,1)+cc(1,k,1,3)
ti4 = cc(1,k,1,4)-cc(1,k,1,2)
tr3 = cc(1,k,1,2)+cc(1,k,1,4)
ch(1,k,1,1) = tr2+tr3
ch(1,k,3,1) = tr2-tr3
ch(2,k,1,1) = ti2+ti3
ch(2,k,3,1) = ti2-ti3
ch(1,k,2,1) = tr1+tr4
ch(1,k,4,1) = tr1-tr4
ch(2,k,2,1) = ti1+ti4
ch(2,k,4,1) = ti1-ti4
end do
do i = 2, ido
do k = 1, l1
ti1 = cc(2,k,i,1)-cc(2,k,i,3)
ti2 = cc(2,k,i,1)+cc(2,k,i,3)
ti3 = cc(2,k,i,2)+cc(2,k,i,4)
tr4 = cc(2,k,i,2)-cc(2,k,i,4)
tr1 = cc(1,k,i,1)-cc(1,k,i,3)
tr2 = cc(1,k,i,1)+cc(1,k,i,3)
ti4 = cc(1,k,i,4)-cc(1,k,i,2)
tr3 = cc(1,k,i,2)+cc(1,k,i,4)
ch(1,k,1,i) = tr2+tr3
cr3 = tr2-tr3
ch(2,k,1,i) = ti2+ti3
ci3 = ti2-ti3
cr2 = tr1+tr4
cr4 = tr1-tr4
ci2 = ti1+ti4
ci4 = ti1-ti4
ch(1,k,2,i) = wa(i,1,1)*cr2+wa(i,1,2)*ci2
ch(2,k,2,i) = wa(i,1,1)*ci2-wa(i,1,2)*cr2
ch(1,k,3,i) = wa(i,2,1)*cr3+wa(i,2,2)*ci3
ch(2,k,3,i) = wa(i,2,1)*ci3-wa(i,2,2)*cr3
ch(1,k,4,i) = wa(i,3,1)*cr4+wa(i,3,2)*ci4
ch(2,k,4,i) = wa(i,3,1)*ci4-wa(i,3,2)*cr4
end do
end do
end if
return
end
subroutine c1f5kb ( ido, l1, na, cc, in1, ch, in2, wa )
!*****************************************************************************80
!
!! C1F5KB is an FFTPACK5.1 auxiliary routine.
!
! License:
!
! Licensed under the GNU General Public License (GPL).
! Copyright (C) 1995-2004, Scientific Computing Division,
! University Corporation for Atmospheric Research
!
! Modified:
!
! 15 November 2011
!
! Author:
!
! Original FORTRAN77 version by Paul Swarztrauber, Richard Valent.
! FORTRAN90 version by John Burkardt.
!
! Reference:
!
! Paul Swarztrauber,
! Vectorizing the Fast Fourier Transforms,
! in Parallel Computations,
! edited by G. Rodrigue,
! Academic Press, 1982.
!
! Paul Swarztrauber,
! Fast Fourier Transform Algorithms for Vector Computers,
! Parallel Computing, pages 45-63, 1984.
!
! Parameters:
!
implicit none
integer ( kind = 4 ) ido
integer ( kind = 4 ) in1
integer ( kind = 4 ) in2
integer ( kind = 4 ) l1
real ( kind = 8 ) cc(in1,l1,ido,5)
real ( kind = 8 ) ch(in2,l1,5,ido)
real ( kind = 8 ) chold1
real ( kind = 8 ) chold2
real ( kind = 8 ) ci2
real ( kind = 8 ) ci3
real ( kind = 8 ) ci4
real ( kind = 8 ) ci5
real ( kind = 8 ) cr2
real ( kind = 8 ) cr3
real ( kind = 8 ) cr4
real ( kind = 8 ) cr5
real ( kind = 8 ) di2
real ( kind = 8 ) di3
real ( kind = 8 ) di4
real ( kind = 8 ) di5
real ( kind = 8 ) dr2
real ( kind = 8 ) dr3
real ( kind = 8 ) dr4
real ( kind = 8 ) dr5
integer ( kind = 4 ) i
integer ( kind = 4 ) k
integer ( kind = 4 ) na
real ( kind = 8 ) ti2
real ( kind = 8 ) ti3
real ( kind = 8 ) ti4
real ( kind = 8 ) ti5
real ( kind = 8 ), parameter :: ti11 = 0.9510565162951536D+00
real ( kind = 8 ), parameter :: ti12 = 0.5877852522924731D+00
real ( kind = 8 ) tr2
real ( kind = 8 ) tr3
real ( kind = 8 ) tr4
real ( kind = 8 ) tr5
real ( kind = 8 ), parameter :: tr11 = 0.3090169943749474D+00
real ( kind = 8 ), parameter :: tr12 = -0.8090169943749474D+00
real ( kind = 8 ) wa(ido,4,2)
if ( 1 < ido .or. na == 1) go to 102
do k = 1, l1
ti5 = cc(2,k,1,2)-cc(2,k,1,5)
ti2 = cc(2,k,1,2)+cc(2,k,1,5)
ti4 = cc(2,k,1,3)-cc(2,k,1,4)
ti3 = cc(2,k,1,3)+cc(2,k,1,4)
tr5 = cc(1,k,1,2)-cc(1,k,1,5)
tr2 = cc(1,k,1,2)+cc(1,k,1,5)
tr4 = cc(1,k,1,3)-cc(1,k,1,4)
tr3 = cc(1,k,1,3)+cc(1,k,1,4)
chold1 = cc(1,k,1,1)+tr2+tr3
chold2 = cc(2,k,1,1)+ti2+ti3
cr2 = cc(1,k,1,1)+tr11*tr2+tr12*tr3
ci2 = cc(2,k,1,1)+tr11*ti2+tr12*ti3
cr3 = cc(1,k,1,1)+tr12*tr2+tr11*tr3
ci3 = cc(2,k,1,1)+tr12*ti2+tr11*ti3
cc(1,k,1,1) = chold1
cc(2,k,1,1) = chold2
cr5 = ti11*tr5+ti12*tr4
ci5 = ti11*ti5+ti12*ti4
cr4 = ti12*tr5-ti11*tr4
ci4 = ti12*ti5-ti11*ti4
cc(1,k,1,2) = cr2-ci5
cc(1,k,1,5) = cr2+ci5
cc(2,k,1,2) = ci2+cr5
cc(2,k,1,3) = ci3+cr4
cc(1,k,1,3) = cr3-ci4
cc(1,k,1,4) = cr3+ci4
cc(2,k,1,4) = ci3-cr4
cc(2,k,1,5) = ci2-cr5
end do
return
102 do 103 k = 1, l1
ti5 = cc(2,k,1,2)-cc(2,k,1,5)
ti2 = cc(2,k,1,2)+cc(2,k,1,5)
ti4 = cc(2,k,1,3)-cc(2,k,1,4)
ti3 = cc(2,k,1,3)+cc(2,k,1,4)
tr5 = cc(1,k,1,2)-cc(1,k,1,5)
tr2 = cc(1,k,1,2)+cc(1,k,1,5)
tr4 = cc(1,k,1,3)-cc(1,k,1,4)
tr3 = cc(1,k,1,3)+cc(1,k,1,4)
ch(1,k,1,1) = cc(1,k,1,1)+tr2+tr3
ch(2,k,1,1) = cc(2,k,1,1)+ti2+ti3
cr2 = cc(1,k,1,1)+tr11*tr2+tr12*tr3
ci2 = cc(2,k,1,1)+tr11*ti2+tr12*ti3
cr3 = cc(1,k,1,1)+tr12*tr2+tr11*tr3
ci3 = cc(2,k,1,1)+tr12*ti2+tr11*ti3
cr5 = ti11*tr5+ti12*tr4
ci5 = ti11*ti5+ti12*ti4
cr4 = ti12*tr5-ti11*tr4
ci4 = ti12*ti5-ti11*ti4
ch(1,k,2,1) = cr2-ci5
ch(1,k,5,1) = cr2+ci5
ch(2,k,2,1) = ci2+cr5
ch(2,k,3,1) = ci3+cr4
ch(1,k,3,1) = cr3-ci4
ch(1,k,4,1) = cr3+ci4
ch(2,k,4,1) = ci3-cr4
ch(2,k,5,1) = ci2-cr5
103 continue
do 105 i = 2, ido
do 104 k = 1, l1
ti5 = cc(2,k,i,2)-cc(2,k,i,5)
ti2 = cc(2,k,i,2)+cc(2,k,i,5)
ti4 = cc(2,k,i,3)-cc(2,k,i,4)
ti3 = cc(2,k,i,3)+cc(2,k,i,4)
tr5 = cc(1,k,i,2)-cc(1,k,i,5)
tr2 = cc(1,k,i,2)+cc(1,k,i,5)
tr4 = cc(1,k,i,3)-cc(1,k,i,4)
tr3 = cc(1,k,i,3)+cc(1,k,i,4)
ch(1,k,1,i) = cc(1,k,i,1)+tr2+tr3
ch(2,k,1,i) = cc(2,k,i,1)+ti2+ti3
cr2 = cc(1,k,i,1)+tr11*tr2+tr12*tr3
ci2 = cc(2,k,i,1)+tr11*ti2+tr12*ti3
cr3 = cc(1,k,i,1)+tr12*tr2+tr11*tr3
ci3 = cc(2,k,i,1)+tr12*ti2+tr11*ti3
cr5 = ti11*tr5+ti12*tr4
ci5 = ti11*ti5+ti12*ti4
cr4 = ti12*tr5-ti11*tr4
ci4 = ti12*ti5-ti11*ti4
dr3 = cr3-ci4
dr4 = cr3+ci4
di3 = ci3+cr4
di4 = ci3-cr4
dr5 = cr2+ci5
dr2 = cr2-ci5
di5 = ci2-cr5
di2 = ci2+cr5
ch(1,k,2,i) = wa(i,1,1)*dr2-wa(i,1,2)*di2
ch(2,k,2,i) = wa(i,1,1)*di2+wa(i,1,2)*dr2
ch(1,k,3,i) = wa(i,2,1)*dr3-wa(i,2,2)*di3
ch(2,k,3,i) = wa(i,2,1)*di3+wa(i,2,2)*dr3
ch(1,k,4,i) = wa(i,3,1)*dr4-wa(i,3,2)*di4
ch(2,k,4,i) = wa(i,3,1)*di4+wa(i,3,2)*dr4
ch(1,k,5,i) = wa(i,4,1)*dr5-wa(i,4,2)*di5
ch(2,k,5,i) = wa(i,4,1)*di5+wa(i,4,2)*dr5
104 continue
105 continue
return
end
subroutine c1f5kf ( ido, l1, na, cc, in1, ch, in2, wa )
!*****************************************************************************80
!
!! C1F5KF is an FFTPACK5.1 auxiliary routine.
!
! License:
!
! Licensed under the GNU General Public License (GPL).
! Copyright (C) 1995-2004, Scientific Computing Division,
! University Corporation for Atmospheric Research
!
! Modified:
!
! 15 November 2011
!
! Author:
!
! Original FORTRAN77 version by Paul Swarztrauber, Richard Valent.
! FORTRAN90 version by John Burkardt.
!
! Reference:
!
! Paul Swarztrauber,
! Vectorizing the Fast Fourier Transforms,
! in Parallel Computations,
! edited by G. Rodrigue,
! Academic Press, 1982.
!
! Paul Swarztrauber,
! Fast Fourier Transform Algorithms for Vector Computers,
! Parallel Computing, pages 45-63, 1984.
!
! Parameters:
!
implicit none
integer ( kind = 4 ) ido
integer ( kind = 4 ) in1
integer ( kind = 4 ) in2
integer ( kind = 4 ) l1
real ( kind = 8 ) cc(in1,l1,ido,5)
real ( kind = 8 ) ch(in2,l1,5,ido)
real ( kind = 8 ) chold1
real ( kind = 8 ) chold2
real ( kind = 8 ) ci2
real ( kind = 8 ) ci3
real ( kind = 8 ) ci4
real ( kind = 8 ) ci5
real ( kind = 8 ) cr2
real ( kind = 8 ) cr3
real ( kind = 8 ) cr4
real ( kind = 8 ) cr5
real ( kind = 8 ) di2
real ( kind = 8 ) di3
real ( kind = 8 ) di4
real ( kind = 8 ) di5
real ( kind = 8 ) dr2
real ( kind = 8 ) dr3