-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproof_finder.py
486 lines (422 loc) · 22.6 KB
/
proof_finder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
"""
This is a proof-of-concept tool that attempts to find hybrid proofs between specified endpoints using a graph-based
method that is built on top of the visual proof representation being developed by Mike Rosulek.
"""
import copy
import itertools
import time
from collections import defaultdict
from typing import Dict, Set
import graphviz
from PyPDF2 import PdfFileMerger
RANDOM = "$"
RANDOM_NO_REPLACE = "$-"
G = "G"
F = "F"
E = "E"
XOR = "XOR"
WILDCARD = "*"
DEADEND = "//"
class Node:
def __init__(self, key: str, kind: str, input_rank: int, output_rank: int):
self.key = key
self.kind = kind
self.input_rank = input_rank
self.output_rank = output_rank
class Edge:
def __init__(self, key: str, source_key: str, target_key: str):
self.key = key
self.source_key = source_key
self.target_key = target_key
class Graph:
def __init__(self, name: str):
self.name = name
self.nodes = dict()
self.edges = dict()
def add_node(self, key: str, kind: str, input_rank: int = 0, output_rank: int = 0):
assert key not in self.nodes
self.nodes[key] = Node(key, kind, input_rank, output_rank)
def add_edge(self, source_key: str, target_key: str):
key = f"{source_key}--{target_key}"
assert key not in self.edges
assert source_key in self.nodes and target_key in self.nodes
self.edges[key] = Edge(key, source_key, target_key)
def remove_node(self, node_key: str):
if node_key in self.nodes:
del self.nodes[node_key]
edge_keys_to_delete = [edge.key for edge in self.edges.values()
if edge.source_key == node_key or edge.target_key == node_key]
for edge_key in edge_keys_to_delete:
del self.edges[edge_key]
def print(self):
for node in self.nodes.values():
print(f"{node.key}: {node.kind} {'INPUT' if node.input_rank else ''} {'OUTPUT' if node.output_rank else ''}")
for edge in self.edges.values():
print(f"{edge.key}: {edge.source_key}, {edge.target_key}")
def print_fancy(self, auto_open_output: bool = False):
dot = graphviz.Digraph(comment=self.name)
for node in self.nodes.values():
if node.kind == RANDOM_NO_REPLACE:
color = "red"
else:
color = "black"
if node.input_rank:
caption = f"in{node.input_rank}"
style = "dotted"
elif node.output_rank:
caption = f"out{node.output_rank}"
style = "dashed"
else:
caption = None
style = "solid"
dot.node(node.key, node.kind, color=color, style=style, xlabel=caption)
for edge in self.edges.values():
color = "red" if self.nodes[edge.source_key].kind == RANDOM_NO_REPLACE else "black"
dot.edge(edge.source_key, edge.target_key, color=color)
dot.render(f"{self.name}.gv", view=auto_open_output)
# TODO: Try to pin all input nodes at same top layer and output nodes at same bottom layer?
def change_node_key(self, old_key: str, new_key: str):
# Delete the old node
assert old_key in self.nodes
node = self.nodes[old_key]
del self.nodes[old_key]
# Make sure new node key isn't in the graph already
if new_key in self.nodes:
new_new_key = f"{new_key}--{time.time()}"
self.change_node_key(new_key, new_new_key)
# Add node under new key
assert new_key not in self.nodes
node.key = new_key
self.nodes[new_key] = node
# Then edit any attached edges
edge_keys_to_modify = {edge.key for edge in self.edges.values()
if edge.source_key == old_key or edge.target_key == old_key}
for edge_key in edge_keys_to_modify:
edge = self.edges[edge_key]
del self.edges[edge_key]
if edge.source_key == old_key:
edge.source_key = new_key
elif edge.target_key == old_key:
edge.target_key = new_key
new_edge_key = self.get_edge_key(edge)
edge.key = new_edge_key
self.edges[new_edge_key] = edge
@staticmethod
def get_edge_key(edge: Edge) -> str:
return f"{edge.source_key}--{edge.target_key}"
class Rule:
"""
A rule defines two graphs (a and b) that are considered indistinguishable (in either direction). The two graphs
must have the same number of 'input' and 'output' nodes. The 'rank' of input and output nodes allows for order to
matter; input and output nodes in one template are mapped to input/output nodes with the same rank in the other.
"""
def __init__(self, name: str):
self.name = name
self.graph_a = Graph(f"{name}_a")
self.graph_b = Graph(f"{name}_b")
def validate(self):
# Make sure there are matching numbers of inputs/outputs in the two graphs
inputs_a = [node.input_rank for node in self.graph_a.nodes.values() if node.input_rank]
outputs_a = [node.output_rank for node in self.graph_a.nodes.values() if node.output_rank]
inputs_b = [node.input_rank for node in self.graph_b.nodes.values() if node.input_rank]
outputs_b = [node.output_rank for node in self.graph_b.nodes.values() if node.output_rank]
assert inputs_a or outputs_a
assert sorted(inputs_a) == sorted(inputs_b)
assert sorted(outputs_a) == sorted(outputs_b)
# Make sure all 'ranks' are unique
assert len(set(inputs_a)) == len(inputs_a)
assert len(set(outputs_a)) == len(outputs_a)
class ProofFinder:
def __init__(self, use_standard_rules: bool = True):
self.start = Graph("start")
self.end = Graph("end")
self.rules = self.create_standard_rules() if use_standard_rules else []
# Store standard node "kinds"
self.random = RANDOM
self.random_no_replace = RANDOM_NO_REPLACE
self.g = G
self.f = F
self.e = E
self.xor = XOR
self.wildcard = WILDCARD
self.deadend = DEADEND
def find_proof(self):
start = self.start
end = self.end
rules = self.rules
graph_paths = [[(copy.deepcopy(start), "-")]]
count = 0
while not any(self.has_reached_end_state(graph_path, start, end) for graph_path in graph_paths) and count < 30:
count += 1
print(f"On iteration {count} of while loop. Have {len(graph_paths)} graph paths currently.")
extended_graph_paths = list()
# Get rid of any identical graph paths
paths_seen = set()
pruned_paths = []
for graph_path in graph_paths:
latest_graph = graph_path[-1][0]
if latest_graph.name not in paths_seen:
pruned_paths.append(graph_path)
paths_seen.add(latest_graph.name)
print(f"After pruning of identical paths, have {len(pruned_paths)} graph paths")
graph_paths = pruned_paths
for graph_path in graph_paths:
latest_graph_tuple = graph_path[-1]
latest_graph = latest_graph_tuple[0]
print(f" Attempting to extend graph path {graph_paths.index(graph_path)}; "
f"latest graph is {latest_graph.name}")
for rule in rules:
# TODO: Prevent from looping back to previous state?
# First look for swaps that can be done from a --> b
matching_subgraphs_a = self.has_subgraph(latest_graph, rule.graph_a)
print(f" Found {len(matching_subgraphs_a)} subgraphs in latest graph in this path that match "
f"{rule.name}a template")
for matching_subgraph, template_a_to_graph_key_map in matching_subgraphs_a:
new_graph_with_b = self.swap_subgraphs(rule.graph_a, rule.graph_b, latest_graph,
template_a_to_graph_key_map)
extended_path = copy.deepcopy(graph_path)
extended_path.append((new_graph_with_b, f"{rule.name}_a-->b"))
extended_graph_paths.append(extended_path)
# Then look for swaps that can be done from b --> a
matching_subgraphs_b = self.has_subgraph(latest_graph, rule.graph_b)
print(f" Found {len(matching_subgraphs_b)} subgraphs in latest graph in this path that match "
f"{rule.name}b template")
for matching_subgraph, template_b_to_graph_key_map in matching_subgraphs_b:
new_graph_with_a = self.swap_subgraphs(rule.graph_b, rule.graph_a, latest_graph,
template_b_to_graph_key_map)
extended_path = copy.deepcopy(graph_path)
extended_path.append((new_graph_with_a, f"{rule.name}_b-->a"))
extended_graph_paths.append(extended_path)
if extended_graph_paths:
graph_paths = extended_graph_paths
# Save all solutions found at the first depth a solution was found in
for graph_path in graph_paths:
if self.has_reached_end_state(graph_path, start, end):
print(f"Found solution: See {graph_path[-1][0].name}.gv.pdf")
self.save_graph_path(graph_path, start, end)
def has_reached_end_state(self, graph_path: list, start: Graph, end: Graph) -> bool:
latest_graph = graph_path[-1][0]
reached_end_state = True if self.has_subgraph(latest_graph, end, include_edges_to_outsiders=True) else False
if reached_end_state:
self.save_graph_path(graph_path, start, end)
return reached_end_state
def has_subgraph(self, graph: Graph, template: Graph, include_edges_to_outsiders: bool = False):
# Organize node IDs by their 'kind'
nodes_by_kind = defaultdict(set)
for node in graph.nodes.values():
nodes_by_kind[node.kind].add(node.key)
# But count any node kind as 'wildcard'
all_non_deadend_node_ids = {node.key for node in graph.nodes.values() if not node.kind == DEADEND} # TODO: this is kind of a patch...
nodes_by_kind[WILDCARD] = all_non_deadend_node_ids
# Create some other helper data structures
template_nodes = list(template.nodes.values())
template_adj_dict = self.get_adjacency_dict(template)
template_key_to_index_map = {node.key: index for index, node in enumerate(template_nodes)}
standardized_template_adj_dict = self.standardize_keys(template_adj_dict, template_key_to_index_map)
# Create possible combinations of nodes that could be used to fulfill the template (don't check edges yet)
node_lists = [nodes_by_kind[node.kind] for node in template_nodes]
combinations_raw = list(itertools.product(*node_lists))
# Get rid of any that use the same node for more than one template node
combinations = [combination for combination in combinations_raw if len(set(combination)) == len(combination)]
# Add edges and figure out if we have any subgraphs matching the template
matching_subgraphs = []
for combination_node_keys in combinations:
combination_graph = Graph(name="--".join(combination_node_keys))
combination_graph.nodes = {node_key: graph.nodes[node_key] for node_key in combination_node_keys}
if include_edges_to_outsiders:
combination_graph.edges = {edge_key: edge for edge_key, edge in graph.edges.items()
if edge.source_key in combination_graph.nodes or
edge.target_key in combination_graph.nodes}
# Will it be ok leaving these as orphan edges??
else:
combination_graph.edges = {edge_key: edge for edge_key, edge in graph.edges.items()
if edge.source_key in combination_graph.nodes and
edge.target_key in combination_graph.nodes}
combination_graph_adj_dict = self.get_adjacency_dict(combination_graph)
# Convert to standardized IDs so we can compare to template
index_to_comb_key_map = {index: node_key for index, node_key in enumerate(combination_node_keys)}
comb_key_to_index_map = {node_key: index for index, node_key in enumerate(combination_node_keys)}
template_to_comb_key_map = {template_key: index_to_comb_key_map[index]
for template_key, index in template_key_to_index_map.items()}
standardized_combination_adj_dict = self.standardize_keys(combination_graph_adj_dict, comb_key_to_index_map)
if standardized_template_adj_dict == standardized_combination_adj_dict:
matching_subgraphs.append([combination_graph, template_to_comb_key_map])
return matching_subgraphs
@staticmethod
def get_adjacency_dict(graph: Graph) -> defaultdict:
adjacency_dict = defaultdict(set)
for edge in graph.edges.values():
adjacency_dict[edge.source_key].add(edge.target_key)
return adjacency_dict
@staticmethod
def standardize_keys(adjacency_dict: Dict[str, Set[str]], key_map: Dict[str, int]) -> dict:
adj_dict_standardized = dict()
for node_key, neighbors in adjacency_dict.items():
standardized_node_key = key_map.get(node_key, node_key)
neighbors_standardized = {key_map.get(neighbor_key, neighbor_key) for neighbor_key in neighbors}
adj_dict_standardized[standardized_node_key] = neighbors_standardized
return adj_dict_standardized
@staticmethod
def save_graph_path(graph_path: list, start: Graph, end: Graph):
start.print_fancy()
end.print_fancy()
merger = PdfFileMerger()
for graph, step_name in graph_path:
graph.print_fancy()
merger.append(f"{graph.name}.gv.pdf")
end.print_fancy()
merger.append(f"end.gv.pdf")
last_graph = graph_path[-1][0]
merger.write(f"path--{last_graph.name}.gv.pdf")
merger.close()
@staticmethod
def swap_subgraphs(subgraph_a: Graph, subgraph_b: Graph, larger_graph: Graph,
subgraph_a_to_graph_key_map: Dict[str, str]) -> Graph:
input_nodes_a = [node for node in subgraph_a.nodes.values() if node.input_rank]
output_nodes_a = [node for node in subgraph_a.nodes.values() if node.output_rank]
# Initiate a fresh copy of the subgraph that'll be swapped in (so we can modify it)
subgraph_to_swap_in = copy.deepcopy(subgraph_b)
# Find corresponding input nodes in b and make the new subgraph uses the original graph's IDs for these
for input_node_a in input_nodes_a:
corresponding_input_node_b = next(node for node in subgraph_to_swap_in.nodes.values()
if node.input_rank == input_node_a.input_rank)
corresponding_graph_key = subgraph_a_to_graph_key_map[input_node_a.key]
subgraph_to_swap_in.change_node_key(corresponding_input_node_b.key, corresponding_graph_key)
if subgraph_to_swap_in.nodes[corresponding_graph_key].kind == WILDCARD:
subgraph_to_swap_in.nodes[corresponding_graph_key].kind = larger_graph.nodes[corresponding_graph_key].kind
# Find corresponding output nodes and make the new subgraph uses the original graph's IDs for these
for output_node_a in output_nodes_a:
corresponding_output_node_b = next(node for node in subgraph_to_swap_in.nodes.values()
if node.output_rank == output_node_a.output_rank)
corresponding_graph_key = subgraph_a_to_graph_key_map[output_node_a.key]
subgraph_to_swap_in.change_node_key(corresponding_output_node_b.key, corresponding_graph_key)
if subgraph_to_swap_in.nodes[corresponding_graph_key].kind == WILDCARD:
subgraph_to_swap_in.nodes[corresponding_graph_key].kind = larger_graph.nodes[corresponding_graph_key].kind
# Make sure non input/output nodes in new subgraph have IDs not already used in larger graph
non_io_node_keys_b = {node.key for node in subgraph_b.nodes.values()
if not node.input_rank and not node.output_rank}
for node_key in non_io_node_keys_b:
subgraph_to_swap_in.change_node_key(node_key, str(time.time()))
# Remove non input/output nodes in the subgraph from the larger graph
new_graph_with_b = copy.deepcopy(larger_graph)
new_graph_with_b.name = f"{new_graph_with_b.name}-{subgraph_a.name}"
io_template_node_keys = {node.key for node in input_nodes_a}.union({node.key for node in output_nodes_a})
non_io_template_node_keys = set(subgraph_a.nodes).difference(io_template_node_keys)
non_io_graph_keys = {subgraph_a_to_graph_key_map[template_key] for template_key in non_io_template_node_keys}
for non_io_graph_key in non_io_graph_keys:
new_graph_with_b.remove_node(non_io_graph_key)
# Delete input/output nodes from larger graph (but keep their edges) since they're in the new subgraph
io_graph_keys = {subgraph_a_to_graph_key_map[template_key] for template_key in io_template_node_keys}
for io_graph_key in io_graph_keys:
del new_graph_with_b.nodes[io_graph_key]
# Avoid marking nodes as input/output in the larger graph
for node in subgraph_to_swap_in.nodes.values():
node.input_rank = 0
node.output_rank = 0
# Add the (now prepped) equivalent graph b into the larger graph
new_graph_with_b.nodes.update(subgraph_to_swap_in.nodes)
new_graph_with_b.edges.update(subgraph_to_swap_in.edges)
return new_graph_with_b
@staticmethod
def create_standard_rules():
# Thank you to Mike for these boilerplate "rules"
# Rule 1 - Random into G generates two randoms
rule_1 = Rule("rule_1")
# First graph
rule_1.graph_a.add_node("$", RANDOM, input_rank=1)
rule_1.graph_a.add_node("G", G)
rule_1.graph_a.add_edge("$", "G")
rule_1.graph_a.add_node("out1", WILDCARD, output_rank=1)
rule_1.graph_a.add_node("out2", WILDCARD, output_rank=2)
rule_1.graph_a.add_edge("G", "out1")
rule_1.graph_a.add_edge("G", "out2")
# Second graph
rule_1.graph_b.add_node("$", RANDOM, input_rank=1) # Think this could also be wildcard technically?
rule_1.graph_b.add_node("$1", RANDOM)
rule_1.graph_b.add_node("$2", RANDOM)
rule_1.graph_b.add_node("out1", WILDCARD, output_rank=1)
rule_1.graph_b.add_node("out2", WILDCARD, output_rank=2)
rule_1.graph_b.add_edge("$1", "out1")
rule_1.graph_b.add_edge("$2", "out2")
rule_1.validate()
# Rule 2 - OTP thing
rule_2 = Rule("rule_2")
# First graph
rule_2.graph_a.add_node("$", RANDOM)
rule_2.graph_a.add_node("out1", WILDCARD, output_rank=1)
rule_2.graph_a.add_edge("$", "out1")
rule_2.graph_a.add_node("xor", XOR)
rule_2.graph_a.add_node("out2", WILDCARD, output_rank=2)
rule_2.graph_a.add_edge("xor", "out2")
rule_2.graph_a.add_edge("$", "xor")
rule_2.graph_a.add_node("in", WILDCARD, input_rank=1)
rule_2.graph_a.add_edge("in", "xor")
# Second graph
rule_2.graph_b.add_node("xor", XOR)
rule_2.graph_b.add_node("out1", WILDCARD, output_rank=1)
rule_2.graph_b.add_edge("xor", "out1")
rule_2.graph_b.add_node("in", WILDCARD, input_rank=1)
rule_2.graph_b.add_edge("in", "xor")
rule_2.graph_b.add_node("$", RANDOM)
rule_2.graph_b.add_edge("$", "xor")
rule_2.graph_b.add_node("out2", WILDCARD, output_rank=2)
rule_2.graph_b.add_edge("$", "out2")
rule_2.validate()
# Rule 3 - Rand indistinguishable from rand without replacement
rule_3 = Rule("rule_3")
# First graph
rule_3.graph_a.add_node("$", RANDOM, output_rank=1)
# Second graph
rule_3.graph_b.add_node("$", RANDOM_NO_REPLACE, output_rank=1)
rule_3.validate()
# Rule 4 - E generates random
rule_4 = Rule("rule_4")
# First graph
rule_4.graph_a.add_node("in", WILDCARD, input_rank=1)
rule_4.graph_a.add_node("E", E)
rule_4.graph_a.add_node("out", WILDCARD, output_rank=1)
rule_4.graph_a.add_edge("in", "E")
rule_4.graph_a.add_edge("E", "out")
# Second graph
rule_4.graph_b.add_node("in", WILDCARD, input_rank=1)
rule_4.graph_b.add_node("deadend", DEADEND)
rule_4.graph_b.add_node("$", RANDOM)
rule_4.graph_b.add_node("out", WILDCARD, output_rank=1)
rule_4.graph_b.add_edge("$", "out")
rule_4.graph_b.add_edge("in", "deadend")
rule_4.validate()
# Rule 5 - F generates random from random without replacement
rule_5 = Rule("rule_5")
# First graph
rule_5.graph_a.add_node("in", RANDOM_NO_REPLACE, input_rank=1)
rule_5.graph_a.add_node("F", F)
rule_5.graph_a.add_node("out", WILDCARD, output_rank=1)
rule_5.graph_a.add_edge("in", "F")
rule_5.graph_a.add_edge("F", "out")
# Second graph
rule_5.graph_b.add_node("in", RANDOM_NO_REPLACE, input_rank=1)
rule_5.graph_b.add_node("deadend", DEADEND)
rule_5.graph_b.add_node("$", RANDOM)
rule_5.graph_b.add_node("out", WILDCARD, output_rank=1)
rule_5.graph_b.add_edge("$", "out")
rule_5.graph_b.add_edge("in", "deadend")
rule_5.validate()
# Rule 6 - Basic OTP
rule_6 = Rule("rule_6")
# First graph
rule_6.graph_a.add_node("in", WILDCARD, input_rank=1)
rule_6.graph_a.add_node("xor", XOR)
rule_6.graph_a.add_edge("in", "xor")
rule_6.graph_a.add_node("$", RANDOM)
rule_6.graph_a.add_edge("$", "xor")
rule_6.graph_a.add_node("out", WILDCARD, output_rank=1)
rule_6.graph_a.add_edge("xor", "out")
# Second graph
rule_6.graph_b.add_node("in", WILDCARD, input_rank=1)
rule_6.graph_b.add_node("deadend", DEADEND)
rule_6.graph_b.add_node("$", RANDOM)
rule_6.graph_b.add_node("out", WILDCARD, output_rank=1)
rule_6.graph_b.add_edge("$", "out")
rule_6.graph_b.add_edge("in", "deadend")
rule_5.validate()
return [rule_1, rule_2, rule_3, rule_4, rule_5, rule_6]