-
Notifications
You must be signed in to change notification settings - Fork 2
/
Facial_Emotion_Recogination.py
344 lines (262 loc) · 12.6 KB
/
Facial_Emotion_Recogination.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.6.0
# kernelspec:
# display_name: Python 3
# name: python3
# ---
# %% [markdown] id="AnSIHhcU7GS2"
# # 1: IMPORT & EXPLORE DATASET FOR FACIAL EXPRESSION DETECTION
# %% id="OK9Bxx3Zr1yM"
# Import the necessary packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
import cv2
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.initializers import glorot_uniform
from tensorflow.keras.utils import plot_model
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint, LearningRateScheduler
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import layers, optimizers
from tensorflow.keras.layers import *
from tensorflow.keras import backend as K
from keras import optimizers
# %% id="nC_n-ip146O0" outputId="9370bc92-da05-4c22-c56c-8a712e6d4f38" colab={"base_uri": "https://localhost:8080/", "height": 359}
# read the csv files for the facial expression data
facialexpression_df = pd.read_csv('/content/drive/My Drive/Proj/Untitled folder/icml_face_data.csv')
facialexpression_df.head(10)
# %% id="kHJdgvax5j3G" outputId="e2a23383-fdbf-4424-adcb-e1b73991f153" colab={"base_uri": "https://localhost:8080/", "height": 137}
facialexpression_df[' pixels'][0] # String format
# %% id="uRYtII7P5sh7"
def string2array(x):
'''
function to convert pixel values in string format to array format
'''
return np.array(x.split(' ')).reshape(48, 48, 1).astype('float32')
def resize(x):
'''
Resize images from (48, 48) to (96, 96)
'''
img = x.reshape(48,48)
return cv2.resize(x, dsize=(96,96), interpolation=cv2.INTER_CUBIC)
# %% id="2Picj0oF52G2" outputId="11bd8799-09cc-452c-9771-3e6264797b73" colab={"base_uri": "https://localhost:8080/", "height": 419}
facialexpression_df[' pixels'] = facialexpression_df[' pixels'].apply(lambda x: resize(string2array(x)))
facialexpression_df
# %% [markdown] id="Xo9lF2_O7RcH"
# # 2: VISUALIZE IMAGES AND PLOT LABELS
# %% id="zWtnTcvL7PEW" outputId="a199bdd5-bbf7-4b3e-d1f9-8705a1792c0d" colab={"base_uri": "https://localhost:8080/", "height": 873}
label_to_text = {0:'anger', 1:'disgust', 2:'sad', 3:'happiness', 4: 'surprise'}
emotions = [0, 1, 2, 3, 4]
count = 0
fig, axs = plt.subplots(5,5, figsize=(12,12))
for i in emotions:
data = facialexpression_df[facialexpression_df['emotion'] == i]
for img in data[' pixels']:
img = img.reshape(96,96)
axs[i][count].imshow(img, cmap='gray')
axs[i][count].title.set_text(label_to_text[i])
count +=1
if count==5:
break
count = 0
fig.tight_layout()
# %% id="fi3myh978MQj" outputId="bb5cdfa2-c20c-4539-cc67-86a2cfeccf28" colab={"base_uri": "https://localhost:8080/"}
facialexpression_df.emotion.value_counts().index
# %% id="ZGV5d1cw-W1Y" outputId="fc740f19-975d-4849-afa2-352fbc001763" colab={"base_uri": "https://localhost:8080/"}
facialexpression_df.emotion.value_counts()
# %% id="jzeBfVEb-bVf" outputId="ba59dc22-1ab1-4519-d1d9-3000287877c5" colab={"base_uri": "https://localhost:8080/", "height": 374}
plt.figure(figsize=(6,6))
sns.barplot(x=[label_to_text[i] for i in facialexpression_df.emotion.value_counts().index],
y=facialexpression_df.emotion.value_counts()
);
# %% [markdown] id="9t_CN9OhEVEn"
# # 3: DATA PREPARATION AND IMAGE AUGMENTATION
# %% id="xz7LIrOn--8w" outputId="ac8d7e3e-24cc-417e-e7b2-2d167f4e1874" colab={"base_uri": "https://localhost:8080/"}
# split the dataframe in to features and labels
from keras.utils import to_categorical
X = facialexpression_df[' pixels']
y = to_categorical(facialexpression_df['emotion'])
X = np.stack(X, axis=0)
X = X.reshape(24568, 96, 96,1)
X.shape, y.shape
# %% id="DaJkGYaeGG6n" outputId="4962e235-500d-4f09-80a5-3aa7535d51b1" colab={"base_uri": "https://localhost:8080/"}
# spliting dataset
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.1, random_state=42)
X_test, X_val, y_test, y_val = train_test_split(X_val, y_val, test_size=0.5, random_state=42)
print("Train Set", X_train.shape, y_train.shape)
print("Val Set", X_val.shape, y_val.shape)
print("Test Set",X_test.shape, y_test.shape)
# %% id="rTNaFcr-HdpF"
# image normalization
X_train = X_train/255
X_val = X_val /255
X_test = X_test/255
# %% id="G2L5lX59H2B-"
# data argumentation
datagen = ImageDataGenerator(rotation_range=20,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.1,
shear_range=0.1,
horizontal_flip=True,
fill_mode="nearest"
)
# %% [markdown] id="b1C04OsnIyAD"
# # 4: BUILD AND TRAIN DEEP LEARNING MODEL FOR FACIAL EXPRESSION CLASSIFICATION
# %% id="aPHicEIfIhHo"
def res_block(X, filter, stage):
# Convolutional_block
X_copy = X
f1 , f2, f3 = filter
# Main Path
X = Conv2D(f1, (1,1),strides = (1,1), name ='res_'+str(stage)+'_conv_a', kernel_initializer= glorot_uniform(seed = 0))(X)
X = MaxPool2D((2,2))(X)
X = BatchNormalization(axis =3, name = 'bn_'+str(stage)+'_conv_a')(X)
X = Activation('relu')(X)
X = Conv2D(f2, kernel_size = (3,3), strides =(1,1), padding = 'same', name ='res_'+str(stage)+'_conv_b', kernel_initializer= glorot_uniform(seed = 0))(X)
X = BatchNormalization(axis =3, name = 'bn_'+str(stage)+'_conv_b')(X)
X = Activation('relu')(X)
X = Conv2D(f3, kernel_size = (1,1), strides =(1,1),name ='res_'+str(stage)+'_conv_c', kernel_initializer= glorot_uniform(seed = 0))(X)
X = BatchNormalization(axis =3, name = 'bn_'+str(stage)+'_conv_c')(X)
# Short path
X_copy = Conv2D(f3, kernel_size = (1,1), strides =(1,1),name ='res_'+str(stage)+'_conv_copy', kernel_initializer= glorot_uniform(seed = 0))(X_copy)
X_copy = MaxPool2D((2,2))(X_copy)
X_copy = BatchNormalization(axis =3, name = 'bn_'+str(stage)+'_conv_copy')(X_copy)
# ADD
X = Add()([X,X_copy])
X = Activation('relu')(X)
# Identity Block 1
X_copy = X
# Main Path
X = Conv2D(f1, (1,1),strides = (1,1), name ='res_'+str(stage)+'_identity_1_a', kernel_initializer= glorot_uniform(seed = 0))(X)
X = BatchNormalization(axis =3, name = 'bn_'+str(stage)+'_identity_1_a')(X)
X = Activation('relu')(X)
X = Conv2D(f2, kernel_size = (3,3), strides =(1,1), padding = 'same', name ='res_'+str(stage)+'_identity_1_b', kernel_initializer= glorot_uniform(seed = 0))(X)
X = BatchNormalization(axis =3, name = 'bn_'+str(stage)+'_identity_1_b')(X)
X = Activation('relu')(X)
X = Conv2D(f3, kernel_size = (1,1), strides =(1,1),name ='res_'+str(stage)+'_identity_1_c', kernel_initializer= glorot_uniform(seed = 0))(X)
X = BatchNormalization(axis =3, name = 'bn_'+str(stage)+'_identity_1_c')(X)
# ADD
X = Add()([X,X_copy])
X = Activation('relu')(X)
# Identity Block 2
X_copy = X
# Main Path
X = Conv2D(f1, (1,1),strides = (1,1), name ='res_'+str(stage)+'_identity_2_a', kernel_initializer= glorot_uniform(seed = 0))(X)
X = BatchNormalization(axis =3, name = 'bn_'+str(stage)+'_identity_2_a')(X)
X = Activation('relu')(X)
X = Conv2D(f2, kernel_size = (3,3), strides =(1,1), padding = 'same', name ='res_'+str(stage)+'_identity_2_b', kernel_initializer= glorot_uniform(seed = 0))(X)
X = BatchNormalization(axis =3, name = 'bn_'+str(stage)+'_identity_2_b')(X)
X = Activation('relu')(X)
X = Conv2D(f3, kernel_size = (1,1), strides =(1,1),name ='res_'+str(stage)+'_identity_2_c', kernel_initializer= glorot_uniform(seed = 0))(X)
X = BatchNormalization(axis =3, name = 'bn_'+str(stage)+'_identity_2_c')(X)
# ADD
X = Add()([X,X_copy])
X = Activation('relu')(X)
return X
# %% id="ZwQzVLdRI2_4" outputId="262fff73-864d-400c-e6bd-2105447c57b3" colab={"base_uri": "https://localhost:8080/"}
input_shape = (96, 96, 1)
# Input tensor shape
X_input = Input(input_shape)
# Zero-padding
X = ZeroPadding2D((3, 3))(X_input)
# 1 - stage
X = Conv2D(64, (7, 7), strides= (2, 2), name = 'conv1', kernel_initializer= glorot_uniform(seed = 0))(X)
X = BatchNormalization(axis =3, name = 'bn_conv1')(X)
X = Activation('relu')(X)
X = MaxPooling2D((3, 3), strides= (2, 2))(X)
# 2 - stage
X = res_block(X, filter= [64, 64, 256], stage= 2)
# 3 - stage
X = res_block(X, filter= [128, 128, 512], stage= 3)
# 4 - stage
# X = res_block(X, filter= [256, 256, 1024], stage= 4)
# Average Pooling
X = AveragePooling2D((4, 4), name = 'Averagea_Pooling')(X)
# Final layer
X = Flatten()(X)
X = Dense(5, activation = 'softmax', name = 'Dense_final', kernel_initializer= glorot_uniform(seed=0))(X)
model = Model( inputs= X_input, outputs = X, name = 'Resnet18')
model.summary()
# %% id="pcQkdc8cI-TE" outputId="453b7224-d784-4969-ac7e-ed49e80b9de7" colab={"base_uri": "https://localhost:8080/", "height": 1000}
plot_model(model, show_shapes=True, to_file='/content/drive/My Drive/Proj/Untitled folder/expression model/facial-expression-model.png')
# %% id="m-pOxs6qJXMY"
# compile the network
model.compile(optimizer = "Adam", loss = "categorical_crossentropy", metrics = ["accuracy"])
# define callbacks functions
earlystopping = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=20)
# save the best model with lower validation loss
path = '/content/drive/My Drive/Proj/Untitled folder/expression model/FacialExpression_weights.hdf5'
checkpointer = ModelCheckpoint(filepath = path, verbose = 1, save_best_only=True)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=8, verbose=1, mode='min')
# %% id="gbnS9WBFKQZQ" outputId="2abf4329-c063-4730-ba39-9c2e218a44b8" colab={"base_uri": "https://localhost:8080/"}
h = model.fit(datagen.flow(X_train, y_train, batch_size=64),
validation_data=(X_val, y_val),
steps_per_epoch=len(X_train) // 64,
epochs= 50,
callbacks=[checkpointer, earlystopping, reduce_lr]
)
# %% id="-Hc4D698QuFP"
# saving model architecure
model_json = model.to_json()
with open("/content/drive/My Drive/Proj/Untitled folder/expression model/FacialExpression-model.json","w") as json_file:
json_file.write(model_json)
# %% [markdown] id="Zvi1tkBqRHd4"
# # 5: ASSESS THE PERFORMANCE OF TRAINED FACIAL EXPRESSION CLASSIFIER MODEL
# %% id="YyTchr3ePkrs" outputId="98237e0a-119a-4746-e8fd-7c257ed21ddb" colab={"base_uri": "https://localhost:8080/"}
h.history.keys()
# %% id="XbbqbPuBPo-T" outputId="5c2f9695-2484-4d2f-c35b-4b7d36827e3a" colab={"base_uri": "https://localhost:8080/", "height": 404}
plt.figure(figsize=(12,6))
plt.subplot(1,2,1)
plt.plot(h.history['loss'])
plt.plot(h.history['val_loss'])
plt.title('Loss vs Epoch')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['train', 'val'])
plt.subplot(1,2,2)
plt.plot(h.history['accuracy'])
plt.plot(h.history['val_accuracy'])
plt.title('Acc vs Epoch')
plt.ylabel('Acc')
plt.xlabel('Epoch')
plt.legend(['train', 'val'])
plt.show()
# %% id="OBjUKdhxKi_i" outputId="972c064d-3a33-4248-9efc-51a83abcc5ef" colab={"base_uri": "https://localhost:8080/"}
_, acc = model.evaluate(X_test, y_test)
print("Accuracy on test set {:.2f} %".format(acc*100))
# %% id="qgeTkg19PgXv"
pred = np.argmax(model.predict(X_test), axis=-1)
y_true = np.argmax(y_test, axis=-1)
# %% id="1tyN2qjgRrqX" outputId="80c30cf8-4d43-4bc7-e057-f022a489ca0b" colab={"base_uri": "https://localhost:8080/", "height": 881}
from sklearn.metrics import confusion_matrix, classification_report
cm = confusion_matrix(y_true, pred)
print(cm)
plt.figure(figsize = (10, 10));
sns.heatmap(cm, annot = True);
print(classification_report(y_true, pred))
# %% id="k7iB7xgLSMJ3" outputId="ed81560b-0868-4229-8c50-3bc1f488df7b" colab={"base_uri": "https://localhost:8080/", "height": 1000}
import random
l = 5
w = 6
fig, axs = plt.subplots(l, w, figsize=(20,18))
axs = axs.ravel()
for i in np.arange(0, l*w):
k = random.randint(0, len(X_test))
axs[i].imshow(X_test[k].reshape(96,96), cmap='gray')
axs[i].set_title('Prediction = {}\n True = {}'.format(label_to_text[pred[k]], label_to_text[y_true[k]]))
axs[i].axis('off')
fig.tight_layout()
# %% id="x3Oo8uwSUjf1"
fig.savefig('/content/drive/My Drive/Proj/Untitled folder/expression model/exp-result.png')
# %% id="zVTtdpt6WAix"