-
Notifications
You must be signed in to change notification settings - Fork 99
/
run_generation.py
executable file
·866 lines (733 loc) · 42.2 KB
/
run_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import time
import datetime
import copy
from pathlib import Path
import yaml
import json
import warnings
# PyTorch & friends
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torchvision import transforms
import torchvision.transforms.functional as TF
# Metrics
from torchmetrics.image.fid import FrechetInceptionDistance
from torchmetrics.image.inception import InceptionScore
from torchmetrics.multimodal import CLIPScore
# Tokenizers (text & image modalities)
from tokenizers import Tokenizer
from fourm.vq.vqvae import VQVAE, DiVAE, VQControlNet
# 4M
from fourm.utils import load_safetensors
from fourm.models.fm import FM
from fourm.data.modality_info import MODALITY_INFO
from fourm.models.generate import GenerationSampler
# Local
import fourm.utils as utils
from fourm.data.modality_info import MODALITY_INFO, MODALITY_TRANSFORMS
from fourm.models.generate import build_chained_generation_schedules, init_empty_target_modality, init_full_input_modality
from fourm.data.masking import UnifiedMasking
from fourm.data.modality_transforms import UnifiedDataTransform, CropSettingsTransform
from fourm.data.multimodal_dataset_folder import MultiModalDatasetFolder
from fourm.data import PreTokenizedImageAugmenter, RandomCropImageAugmenter
from fourm.data.dataset_utils import SubsampleDatasetWrapper
from fourm.utils.generation_datasets import PartiPromptsDataset, EmptyDataset
from fourm.utils.generation import batch_to_device
from fourm.utils.plotting_utils import decode_dict, plot_conds_and_targets, save_conds_and_targets, denormalize
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True
torch.set_grad_enabled(False)
def get_args(args=None):
config_parser = parser = argparse.ArgumentParser(description='Generation Config', add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser.add_argument('-dc', '--data_config', default='', type=str, metavar='FILE',
help='YAML config file specifying validation data specific arguments')
parser.add_argument('-gc', '--gen_config', default='', type=str, metavar='FILE',
help='YAML config file specifying generation specific arguments')
parser.add_argument('-src', '--sr_config', default='', type=str, metavar='FILE',
help='YAML config file specifying super resolution specific arguments')
parser = argparse.ArgumentParser('FourM generation script', add_help=False)
parser.add_argument('--run_name', type=str, default='auto')
# Generation parameters
parser.add_argument('--cond_domains', default='caption-det', type=str,
help='Conditioning domain names, separated by hyphen (default: %(default)s)')
parser.add_argument('--target_domains', default='tok_clip-tok_normal-tok_rgb', type=str,
help='Target domain names, separated by hyphen. (default: %(default)s)')
parser.add_argument('--tokens_per_target', default='196-196-196', type=str,
help='Number of tokens for each target modality. (default: %(default)s)')
parser.add_argument('--autoregression_schemes', default='maskgit-maskgit-maskgit', type=str,
help='Scheme of autoregressive generation for each target modality. "maskgit", "roar" or "autoregressive" (default: %(default)s)')
parser.add_argument('--decoding_steps', default='25-25-25', type=str,
help='Number of decoding steps for each target modality. (default: %(default)s)')
parser.add_argument('--token_decoding_schedules', default='cosine-cosine-cosine', type=str,
help='Token decoding schedules for each target modality. (default: %(default)s)')
parser.add_argument('--temps', default='5.0-1.0-1.0', type=str,
help='Starting temperature for each target modality. (default: %(default)s)')
parser.add_argument('--temp_schedules', default='linear-linear-linear', type=str,
help='Temperature schedules for each target modality. (default: %(default)s)')
parser.add_argument('--cfg_scales', default='4.0-4.0-4.0', type=str,
help='Classifier-free guidance scales for each target modality. (default: %(default)s)')
parser.add_argument('--cfg_schedules', default='constant-constant-constant', type=str,
help='Classifier-free guidance schedules for each target modality. (default: %(default)s)')
parser.add_argument('--cfg_grow_conditioning', action='store_true',
help='After every completed modality, add them to classifier-free guidance conditioning.')
parser.add_argument('--no_cfg_grow_conditioning', action='store_false', dest='cfg_grow_conditioning',
help='Perform classifier-free guidance only on initial conditioning.')
parser.set_defaults(cfg_grow_conditioning=True)
parser.add_argument('--top_p', default=0.0, type=float,
help='top_p > 0.0: Keep the top tokens with cumulative probability >= top_p (a.k.a. nucleus filtering) (default: %(default)s)')
parser.add_argument('--top_k', default=0.0, type=float,
help='top_k > 0: Keep only top k tokens with highest probability (a.k.a. top-k filtering) (default: %(default)s)')
# Super resolution parameters
parser.add_argument('--sr_cond_domains', default=None, type=str,
help='SuperRes: Conditioning domain names, separated by hyphen. If none, all base conditions and targets are used. (default: %(default)s)')
parser.add_argument('--sr_target_domains', default='tok_clip@448-tok_rgb@448', type=str,
help='SuperRes: Target domain names, separated by hyphen. (default: %(default)s)')
parser.add_argument('--sr_tokens_per_target', default='784', type=str,
help='SuperRes: Number of tokens for each target modality. (default: %(default)s)')
parser.add_argument('--sr_autoregression_schemes', default='maskgit', type=str,
help='SuperRes: Scheme of autoregressive generation for each target modality. "maskgit", "roar" or "autoregressive" (default: %(default)s)')
parser.add_argument('--sr_decoding_steps', default='8', type=str,
help='SuperRes: Number of decoding steps for each target modality. (default: %(default)s)')
parser.add_argument('--sr_token_decoding_schedules', default='cosine', type=str,
help='SuperRes: Token decoding schedules for each target modality. (default: %(default)s)')
parser.add_argument('--sr_temps', default='1.0', type=str,
help='SuperRes: Starting temperature for each target modality. (default: %(default)s)')
parser.add_argument('--sr_temp_schedules', default='linear', type=str,
help='SuperRes: Temperature schedules for each target modality. (default: %(default)s)')
parser.add_argument('--sr_cfg_scales', default='4.0', type=str,
help='SuperRes: Classifier-free guidance scales for each target modality. (default: %(default)s)')
parser.add_argument('--sr_cfg_schedules', default='constant', type=str,
help='SuperRes: Classifier-free guidance schedules for each target modality. (default: %(default)s)')
parser.add_argument('--sr_cfg_grow_conditioning', action='store_true',
help='SuperRes: After every completed modality, add them to classifier-free guidance conditioning.')
parser.add_argument('--sr_no_cfg_grow_conditioning', action='store_false', dest='sr_cfg_grow_conditioning',
help='SuperRes: Perform classifier-free guidance only on initial conditioning.')
parser.set_defaults(sr_cfg_grow_conditioning=True)
parser.add_argument('--sr_top_p', default=0.0, type=float,
help='SuperRes: top_p > 0.0: Keep the top tokens with cumulative probability >= top_p (a.k.a. nucleus filtering) (default: %(default)s)')
parser.add_argument('--sr_top_k', default=0.0, type=float,
help='SuperRes: top_k > 0: Keep only top k tokens with highest probability (a.k.a. top-k filtering) (default: %(default)s)')
# Script parameters
parser.add_argument('--num_samples', default=None,
help='Maximum number of samples to draw from the dataloader. (default: %(default)s)')
parser.add_argument('--num_variations', default=1, type=int,
help='Number of variations to generate from each sample. (default: %(default)s)')
parser.add_argument('--seed', default=0, type=int, help='Random seed ')
# Tokenizer settings
parser.add_argument('--detokenizer_steps', default=25, type=int,
help='Number of DDPM/DDIM steps for decoding with diffusion-based tokenizers. (default: %(default)s)')
parser.add_argument('--rgb_tok_id', default=None, type=str,
help='RGB tokenizer ID (default: %(default)s)')
parser.add_argument('--depth_tok_id', default=None, type=str,
help='Depth tokenizer ID (default: %(default)s)')
parser.add_argument('--normal_tok_id', default=None, type=str,
help='Normal tokenizer ID (default: %(default)s)')
parser.add_argument('--edges_tok_id', default=None, type=str,
help='Edges tokenizer ID (default: %(default)s)')
parser.add_argument('--semseg_tok_id', default=None, type=str,
help='Semseg tokenizer ID (default: %(default)s)')
parser.add_argument('--clip_tok_id', default=None, type=str,
help='CLIP tokenizer ID (default: %(default)s)')
parser.add_argument('--dinov2_tok_id', default=None, type=str,
help='DINOv2 tokenizer ID (default: %(default)s)')
parser.add_argument('--imagebind_tok_id', default=None, type=str,
help='ImageBind tokenizer ID (default: %(default)s)')
parser.add_argument('--dinov2_glob_tok_id', default=None, type=str,
help='DINOv2 global tokenizer ID (default: %(default)s)')
parser.add_argument('--imagebind_glob_tok_id', default=None, type=str,
help='ImageBind global tokenizer ID (default: %(default)s)')
parser.add_argument('--sam_instance_tok_id', default=None, type=str,
help='SAM instance tokenizer ID (default: %(default)s)')
parser.add_argument('--human_poses_tok_id', default=None, type=str,
help='Human poses tokenizer ID (default: %(default)s)')
parser.add_argument('--text_tok_path', default='fourm/utils/tokenizer/trained/text_tokenizer_4m_wordpiece_30k.json', type=str,
help='Text tokenizer path (default: %(default)s)')
# ControlNet parameters
parser.add_argument('--activate_controlnet', action='store_true',
help='When enabled, RGB detokenizer will be replaced by RGB ControlNet.')
parser.add_argument('--no_activate_controlnet', action='store_false', dest='activate_controlnet')
parser.set_defaults(activate_controlnet=False)
parser.add_argument('--controlnet_id', default=None, type=str,
help='RGB ControlNet ID (default: %(default)s)')
parser.add_argument('--controlnet_guidance_scale', default=2.5, type=float,
help='RGB ControlNet guidance scale (default: %(default)s)')
parser.add_argument('--controlnet_cond_scale', default=0.8, type=float,
help='RGB ControlNet conditioning scale (default: %(default)s)')
# Model parameters
parser.add_argument('--model', default=None, type=str, metavar='MODEL',
help='4M model: Hugging Face Hub ID, or path to local safetensors checkpoint (default: %(default)s)')
parser.add_argument('--sr_model', default=None, type=str, metavar='MODEL',
help='Superres model: Hugging Face Hub ID, or path to local safetensors checkpoint (default: %(default)s)')
parser.add_argument('--image_size', default=224, type=int,
help='Image size. (default: %(default)s)')
parser.add_argument('--patch_size', default=16, type=int,
help='Base patch size for image-like modalities (default: %(default)s)')
parser.add_argument('--dtype', type=str, default='float32',
choices=['float16', 'bfloat16', 'float32', 'bf16', 'fp16', 'fp32'],
help='Data type (default: %(default)s')
# Data
parser.add_argument('--data_path', default='/mnt/datasets/cc12_multitask_224/val',
help='Path to dataset (default: %(default)s)')
parser.add_argument('--data_name', default='', type=str,
help='Name of dataset, used for wandb and output folder. (default: %(default)s)')
parser.add_argument('--num_workers', default=1, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem', help='')
parser.set_defaults(pin_mem=True)
parser.add_argument('--parti_prompts_t5_embs', default=None, type=str,
help="(Optional) path to pre-computed T5 embeddings for PartiPrompts (in .npz format)")
# Misc.
parser.add_argument('--s3_endpoint', default='', type=str, help='S3 endpoint URL')
parser.add_argument('--s3_path', default='', type=str, help='S3 path to model')
parser.add_argument('--image_size_metrics', default=256, type=int,
help='Image size for computing FID, Inception, and CLIP metrics. (default: %(default)s)')
parser.add_argument('--name', default='', type=str,
help='wandb and folder name (default: %(default)s)')
parser.add_argument('--sr_name', default='', type=str,
help='SR wandb and folder name (default: %(default)s)')
parser.add_argument('--output_dir', default='',
help='Path where to save, empty for no saving')
parser.add_argument('--num_log_images', default=100,
help='Number of images to log (default: %(default)s)')
parser.add_argument('--save_all_outputs', action='store_true',
help='Save all conditioning and target modalities for all drawn samples as individual files.')
parser.add_argument('--no_save_all_outputs', action='store_false', dest='save_all_outputs',
help='Do not save any outputs.')
parser.set_defaults(save_all_outputs=False)
# Wandb logging
parser.add_argument('--log_wandb', default=False, action='store_true',
help='Log training and validation metrics to wandb')
parser.add_argument('--no_log_wandb', action='store_false', dest='log_wandb')
parser.set_defaults(log_wandb=False)
parser.add_argument('--wandb_project', default=None, type=str,
help='Project name on wandb')
parser.add_argument('--wandb_entity', default=None, type=str,
help='User or team name on wandb')
parser.add_argument('--wandb_run_name', default=None, type=str,
help='Run name on wandb')
parser.add_argument('--wandb_mode', default='online', type=str,
help='Wandb mode')
parser.add_argument('--show_user_warnings', default=False, action='store_true')
# GPU / Distributed parameters
parser.add_argument('--device', default='cuda',
help='Device to use for training / testing')
parser.add_argument('--dist_gen', action='store_true', default=False,
help='Enabling distributed generation')
parser.add_argument('--no_dist_gen', action='store_false', dest='dist_gen',
help='Disabling distributed generation')
parser.set_defaults(dist_gen=True)
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
# Parse config file if there is one
args_config, remaining = config_parser.parse_known_args(args)
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
if args_config.data_config:
with open(args_config.data_config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
if args_config.gen_config:
with open(args_config.gen_config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
if args_config.sr_config:
with open(args_config.sr_config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
#The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Add the config paths if given
args.config_path = args_config.config
args.data_config_path = args_config.data_config
args.gen_config_path = args_config.gen_config
args.sr_config_path = args_config.sr_config
return args
def truncate_caption_for_clip(caption, clip_tokenizer, max_tokens=60):
seq_trunc = clip_tokenizer.encode(caption)
seq_trunc = seq_trunc[:max_tokens-1] + [seq_trunc[-1]]
cap_trunc = clip_tokenizer.decode(seq_trunc)
return caption[:len(cap_trunc)]
def string_to_list(input_string, dtype=float, delim='-'):
"""
Convert a string separated by hyphens into a list of a given data type,
replacing invalid values with None.
Args:
input_string (str): The input string to convert.
dtype (type): The target data type for conversion. Default is float.
delim (str): The delimiter used to separate values in the string. Default is '-'.
Returns:
list: A list of values in the specified data type or None for invalid values.
"""
if input_string is None:
return [None]
if isinstance(input_string, float) or isinstance(input_string, int):
return [input_string]
def try_cast(item, dtype):
try:
return dtype(item)
except ValueError:
return None
return [try_cast(item, dtype) for item in input_string.split(delim)]
def repeat_if_necessary(lst, n):
return lst * n if len(lst) == 1 else lst
def load_model(model_id, model_class, device):
if model_id is None:
model = None
elif model_id.endswith('.safetensors'):
ckpt, config = load_safetensors(model_id)
model = model_class(config=config)
model.load_state_dict(ckpt)
else:
model = model_class.from_pretrained(model_id)
return model.eval().to(device)
def load_tokenizers(args, device):
toks = {}
# RGB tokenizer
if args.rgb_tok_id:
toks['tok_rgb'] = load_model(args.rgb_tok_id, DiVAE, device)
# Optional RGB ControlNet
if args.controlnet_id:
toks['controlnet'] = load_model(args.controlnet_id, VQControlNet, device)
# Depth tokenizer
if args.depth_tok_id:
toks['tok_depth'] = load_model(args.depth_tok_id, DiVAE, device)
# Normal tokenizer
if args.normal_tok_id:
toks['tok_normal'] = load_model(args.normal_tok_id, DiVAE, device)
# Edges tokenizer
if args.edges_tok_id:
toks['tok_canny_edge'] = load_model(args.edges_tok_id, DiVAE, device)
toks['tok_sam_edge'] = toks['tok_canny_edge']
# Semseg tokenizer
if args.semseg_tok_id:
toks['tok_semseg'] = load_model(args.semseg_tok_id, VQVAE, device)
# CLIP tokenizer
if args.clip_tok_id:
toks['tok_clip'] = load_model(args.clip_tok_id, VQVAE, device)
# DINOv2 tokenizer
if args.dinov2_tok_id:
toks['tok_dinov2'] = load_model(args.dinov2_tok_id, VQVAE, device)
# ImageBind tokenizer
if args.imagebind_tok_id:
toks['tok_imagebind'] = load_model(args.imagebind_tok_id, VQVAE, device)
# DINOv2 global tokenizer
if args.dinov2_glob_tok_id:
toks['tok_dinov2_global'] = load_model(args.dinov2_glob_tok_id, VQVAE, device)
# ImageBind global tokenizer
if args.imagebind_glob_tok_id:
toks['tok_imagebind_global'] = load_model(args.imagebind_glob_tok_id, VQVAE, device)
# SAM instances
if args.sam_instance_tok_id:
toks['sam_instance'] = load_model(args.sam_instance_tok_id, VQVAE, device)
# Human poses
if args.human_poses_tok_id:
toks['tok_pose'] = load_model(args.human_poses_tok_id, VQVAE, device)
return toks
def get_dataset(args, text_tokenizer):
# For unconditional generation
if len(args.cond_domains) == 0:
args.loaded_domains = args.cond_domains
dataset = EmptyDataset(dataset_size=args.num_samples)
# For caption->X generation using Parti Prompts
elif args.data_path == 'parti_prompts':
llm_embedder = None
args.loaded_domains = args.cond_domains
args.parti_prompts_t5_embs = None
dataset = PartiPromptsDataset(text_tokenizer, max_length=128, parti_prompts_t5_embs=args.parti_prompts_t5_embs, llm_embedder=llm_embedder)
# Otherwise, construct CC12M/IN1K-like pre-tokenized dataset
else:
# Also load RGB (for det augmentation and FID calculation)
args.loaded_domains = sorted(list(set(args.cond_domains) | set(['rgb'])))
modality_transforms = MODALITY_TRANSFORMS
modality_info = {mod: MODALITY_INFO[mod] for mod in args.loaded_domains}
# Max tokens
for k in modality_info:
num_patches = (args.image_size // args.patch_size) ** 2
if modality_info[k]['type'] == 'img':
modality_info[k]['max_tokens'] = num_patches
# Dirichlet concentration parameter (Alpha)
for k in modality_info:
modality_info[k]["input_alphas"] = [0.]
modality_info[k]["target_alphas"] = [0.]
modality_info[k]["keep"] = ['all']
if 'tok' not in '-'.join(args.loaded_domains):
image_augmenter = RandomCropImageAugmenter(
target_size=args.image_size, hflip=False,
crop_scale=(1.0,1.0), crop_ratio=(1.0,1.0)
)
else:
image_augmenter = PreTokenizedImageAugmenter(target_size=args.image_size, no_aug=True)
modality_transforms["crop_settings"] = CropSettingsTransform()
args.loaded_domains.append("crop_settings")
transform = transforms.Compose([
UnifiedDataTransform(transforms_dict=modality_transforms, image_augmenter=image_augmenter),
UnifiedMasking(
modality_info=modality_info, text_tokenizer=text_tokenizer,
input_tokens_range=512, target_tokens_range=512
),
])
modality_paths = {mod: modality_info[mod]['path'] for mod in modality_info if modality_info[mod].get('path', None) is not None}
dataset = MultiModalDatasetFolder(
args.data_path, args.loaded_domains, modality_paths=modality_paths,
modality_transforms=modality_transforms, transform=transform
)
# Subsample dataset if needed
dataset = SubsampleDatasetWrapper(dataset, dataset_size=args.num_samples, seed=0, return_orig_idx=True)
return dataset
def create_superres_input(out_dict, sr_cond_domains, sr_target_domains, sr_tokens_per_target, text_tokenizer, device):
superres_sample = {}
# Low-res condition and generated targets become condition for super resolution
for domain in sr_cond_domains:
superres_sample[domain] = out_dict[domain]
# Initialize input modalities
for cond_mod in sr_cond_domains:
superres_sample = init_full_input_modality(superres_sample, MODALITY_INFO, cond_mod, device, eos_id=text_tokenizer.token_to_id("[EOS]"))
# Initialize target modalities
for target_mod, ntoks in zip(sr_target_domains, sr_tokens_per_target):
superres_sample = init_empty_target_modality(superres_sample, MODALITY_INFO, target_mod, 1, ntoks, device)
return superres_sample
def main(args):
args = copy.deepcopy(args)
utils.init_distributed_mode(args)
device = torch.device(args.device)
# Fix the seed for reproducibility
args.seed = args.seed + utils.get_rank()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# random.seed(args.seed)
cudnn.benchmark = True
if not args.show_user_warnings:
warnings.filterwarnings("ignore", category=UserWarning)
if args.dtype in ['float16', 'fp16']:
dtype = torch.float16
elif args.dtype in ['bfloat16', 'bf16']:
dtype = torch.bfloat16
elif args.dtype in ['float32', 'fp32']:
dtype = torch.float32
else:
raise ValueError(f"Invalid dtype: {args.dtype}")
if args.data_name == 'auto':
args.data_name = Path(args.data_config_path).stem
if args.name == 'auto':
args.name = Path(args.gen_config_path).stem
if args.sr_name == 'auto':
args.sr_name = Path(args.sr_config_path).stem
# Output directory
args.output_dir = os.path.join(args.output_dir, args.data_name, f'{args.name}--{args.sr_name}' if args.sr_name else args.name)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
# Prepare args
delim = '-'
# Generation parameters
args.cond_domains = sorted(list(string_to_list(args.cond_domains, dtype=str, delim=delim)))
args.target_domains = string_to_list(args.target_domains, dtype=str, delim=delim)
args.all_domains = sorted(list(set(args.cond_domains) | set(args.target_domains)))
args.loaded_domains = sorted(list(set(args.cond_domains) | set(['rgb'])))
n_targets = len(args.target_domains)
args.tokens_per_target = repeat_if_necessary(string_to_list(args.tokens_per_target, dtype=int, delim=delim), n_targets)
args.autoregression_schemes = repeat_if_necessary(string_to_list(args.autoregression_schemes, dtype=str, delim=delim), n_targets)
args.decoding_steps = repeat_if_necessary(string_to_list(args.decoding_steps, dtype=int, delim=delim), n_targets)
args.token_decoding_schedules = repeat_if_necessary(string_to_list(args.token_decoding_schedules, dtype=str, delim=delim), n_targets)
args.temps = repeat_if_necessary(string_to_list(args.temps, dtype=float, delim=delim), n_targets)
args.temp_schedules = repeat_if_necessary(string_to_list(args.temp_schedules, dtype=str, delim=delim), n_targets)
args.cfg_scales = repeat_if_necessary(string_to_list(args.cfg_scales, dtype=float, delim=delim), n_targets)
args.cfg_schedules = repeat_if_necessary(string_to_list(args.cfg_schedules, dtype=str, delim=delim), n_targets)
# Super-resolution parameters
if args.sr_cond_domains is None:
args.sr_cond_domains = args.cond_domains + args.target_domains
else:
args.sr_cond_domains = sorted(list(string_to_list(args.sr_cond_domains, dtype=str, delim=delim)))
args.sr_target_domains = string_to_list(args.sr_target_domains, dtype=str, delim=delim)
args.sr_all_domains = sorted(list(set(args.sr_cond_domains) | set(args.sr_target_domains)))
sr_n_targets = len(args.sr_target_domains)
args.sr_tokens_per_target = repeat_if_necessary(string_to_list(args.sr_tokens_per_target, dtype=int, delim=delim), sr_n_targets)
args.sr_autoregression_schemes = repeat_if_necessary(string_to_list(args.sr_autoregression_schemes, dtype=str, delim=delim), sr_n_targets)
args.sr_decoding_steps = repeat_if_necessary(string_to_list(args.sr_decoding_steps, dtype=int, delim=delim), sr_n_targets)
args.sr_token_decoding_schedules = repeat_if_necessary(string_to_list(args.sr_token_decoding_schedules, dtype=str, delim=delim), sr_n_targets)
args.sr_temps = repeat_if_necessary(string_to_list(args.sr_temps, dtype=float, delim=delim), sr_n_targets)
args.sr_temp_schedules = repeat_if_necessary(string_to_list(args.sr_temp_schedules, dtype=str, delim=delim), sr_n_targets)
args.sr_cfg_scales = repeat_if_necessary(string_to_list(args.sr_cfg_scales, dtype=float, delim=delim), sr_n_targets)
args.sr_cfg_schedules = repeat_if_necessary(string_to_list(args.sr_cfg_schedules, dtype=str, delim=delim), sr_n_targets)
# Load text tokenizer
text_tokenizer = Tokenizer.from_file(args.text_tok_path)
# Load image tokenizers
tokenizers = load_tokenizers(args, device)
# Load model & define sampler
model = load_model(args.model, FM, device)
gen_sampler= GenerationSampler(model)
# Load super-resolution model if so specified
model_sr = load_model(args.sr_model, FM, device)
gen_sampler_sr = GenerationSampler(model_sr) if model_sr is not None else None
# Get dataset
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
dataset = get_dataset(args, text_tokenizer)
if args.dist_gen:
if len(dataset) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
data_sampler = torch.utils.data.DistributedSampler(
dataset, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
data_sampler = torch.utils.data.SequentialSampler(dataset)
data_loader = torch.utils.data.DataLoader(
dataset, sampler=data_sampler,
batch_size=1, num_workers=args.num_workers,
pin_memory=args.pin_mem, drop_last=False,
)
# Logging
if global_rank == 0 and args.log_wandb:
# Edit run name and add tags
args.wandb_tags = [args.data_name, args.name, args.wandb_run_name]
if args.sr_name:
args.wandb_tags.append(args.sr_name)
args.wandb_run_name = f"{args.name}--{args.sr_name}--{args.data_name}--{args.wandb_run_name}"
log_writer = utils.WandbLogger(args)
log_writer.set_step(0)
else:
log_writer = None
print('\nArguments:')
print(args)
print('')
print('Starting generation...')
start_time = time.time()
# Measure generation statistics & save samples
gen_stats = generate(gen_sampler, gen_sampler_sr, tokenizers, text_tokenizer, data_loader, device, dtype, args)
if log_writer is not None:
log_writer.update(gen_stats)
if args.output_dir and utils.is_main_process():
with open(os.path.join(args.output_dir, "log_eval.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(gen_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Done! Total generation time {} on device {}'.format(total_time_str, device))
torch.cuda.empty_cache()
@torch.no_grad()
def generate(gen_sampler, gen_sampler_sr, tokenizers, text_tokenizer, data_loader, device, dtype, args):
# Set up generation schedule
schedule = build_chained_generation_schedules(
cond_domains=args.cond_domains,
target_domains=args.target_domains,
tokens_per_target=args.tokens_per_target,
autoregression_schemes=args.autoregression_schemes,
decoding_steps=args.decoding_steps,
token_decoding_schedules=args.token_decoding_schedules,
temps =args.temps,
temp_schedules=args.temp_schedules,
cfg_scales=args.cfg_scales,
cfg_schedules=args.cfg_schedules,
cfg_grow_conditioning=args.cfg_grow_conditioning,
)
# Set up super resolution schedule
sr_schedule = build_chained_generation_schedules(
cond_domains=args.sr_cond_domains,
target_domains=args.sr_target_domains,
tokens_per_target=args.sr_tokens_per_target,
autoregression_schemes=args.sr_autoregression_schemes,
decoding_steps=args.sr_decoding_steps,
token_decoding_schedules=args.sr_token_decoding_schedules,
temps =args.sr_temps,
temp_schedules=args.sr_temp_schedules,
cfg_scales=args.sr_cfg_scales,
cfg_schedules=args.sr_cfg_schedules,
cfg_grow_conditioning=args.sr_cfg_grow_conditioning,
) if gen_sampler_sr is not None else None
# Set up metric loggers
fid_metric, inception_metric, clip_metric = None, None, None
if 'tok_rgb' in args.target_domains:
inception_metric = InceptionScore(
feature='logits_unbiased', splits=10, normalize=False,
sync_on_compute=True
).to(device)
if 'rgb' in args.loaded_domains:
fid_metric = FrechetInceptionDistance(
feature=2048, reset_real_features=True,
normalize=False, sync_on_compute=True
).to(device)
if 'caption' in args.cond_domains:
clip_metric = CLIPScore(
model_name_or_path="openai/clip-vit-large-patch14",
sync_on_compute=True
).to(device)
# For super resolution as well (if it is performed)
fid_metric_sr, inception_metric_sr, clip_metric_sr = None, None, None
if gen_sampler_sr is not None and 'tok_rgb@448' in args.sr_target_domains:
inception_metric_sr = InceptionScore(
feature='logits_unbiased', splits=10, normalize=False,
sync_on_compute=True
).to(device)
if 'rgb' in args.loaded_domains:
fid_metric_sr = FrechetInceptionDistance(
feature=2048, reset_real_features=True,
normalize=False, sync_on_compute=True
).to(device)
if 'caption' in args.cond_domains:
clip_metric_sr = CLIPScore(
model_name_or_path="openai/clip-vit-large-patch14",
sync_on_compute=True
).to(device)
metric_logger = utils.MetricLogger(delimiter=" ")
logged_images_count = 0
for sample, sample_idx in metric_logger.log_every(data_loader, print_freq=1, header='Generation:'):
sample_idx = sample_idx[0].item()
# Sample to device
sample = batch_to_device(sample, device, domains=args.loaded_domains)
# Update FID metric with a sample from the real distribution
if fid_metric is not None or fid_metric_sr is not None:
rgb_real = (255 * denormalize(sample['rgb']['tensor'])).to(torch.uint8)
rgb_real = TF.resize(rgb_real, size=args.image_size_metrics)
if fid_metric is not None:
fid_metric.update(rgb_real, real=True)
if fid_metric_sr is not None:
fid_metric_sr.update(rgb_real, real=True)
# Remove RGB if it is not used as an input (just loaded to make det dataloading happy and for metrics)
for domain in args.loaded_domains:
if domain not in args.cond_domains and domain in sample:
del sample[domain]
# Initialize input modalities
for cond_mod in args.cond_domains:
sample = init_full_input_modality(sample, MODALITY_INFO, cond_mod, device, eos_id=text_tokenizer.token_to_id("[EOS]"))
# Initialize target modalities
for target_mod, ntoks in zip(args.target_domains, args.tokens_per_target):
sample = init_empty_target_modality(sample, MODALITY_INFO, target_mod, 1, ntoks, device)
dec_dicts = []
dec_dicts_sr = []
# Draw several samples using the same conditioning
for i in range(args.num_variations):
with torch.cuda.amp.autocast(dtype=dtype, enabled=dtype != torch.float32):
out_dict = gen_sampler.generate(
sample, schedule, text_tokenizer=text_tokenizer, verbose=False,
seed=utils.generate_seed(args.seed, sample_idx, i),
top_p=args.top_p, top_k=args.top_k
)
# Decode tokens into images/text
dec_dict = decode_dict(
out_dict, tokenizers, text_tokenizer,
image_size=args.image_size, patch_size=args.patch_size,
decoding_steps=args.detokenizer_steps,
activate_controlnet=args.activate_controlnet,
controlnet_guidance_scale=args.controlnet_guidance_scale,
controlnet_cond_scale=args.controlnet_cond_scale,
)
dec_dicts.append(dec_dict)
# Update metrics
if inception_metric is not None:
rgb_pred = TF.to_tensor(255 * dec_dict['tok_rgb']).to(dtype=torch.uint8, device=device).unsqueeze(0)
rgb_pred = TF.resize(rgb_pred, size=args.image_size_metrics)
inception_metric.update(rgb_pred)
if fid_metric is not None:
fid_metric.update(rgb_pred, real=False)
if clip_metric is not None:
caption_trunc = truncate_caption_for_clip(dec_dict['caption'][0], clip_metric.processor.tokenizer)
clip_metric.update(rgb_pred, caption_trunc)
# Super-resolution
if gen_sampler_sr is not None:
with torch.cuda.amp.autocast(dtype=dtype, enabled=dtype != torch.float32):
sample_sr = create_superres_input(
out_dict, args.sr_cond_domains, args.sr_target_domains,
args.sr_tokens_per_target, text_tokenizer, device
)
out_dict_sr = gen_sampler_sr.generate(
sample_sr, sr_schedule, text_tokenizer=text_tokenizer, verbose=False,
seed=utils.generate_seed(args.seed, sample_idx, i),
top_p=args.sr_top_p, top_k=args.sr_top_k,
)
# Decode tokens into images/text
dec_dict_sr = decode_dict(
out_dict_sr, tokenizers, text_tokenizer,
image_size=448, patch_size=args.patch_size,
decoding_steps=args.detokenizer_steps,
activate_controlnet=args.activate_controlnet,
controlnet_guidance_scale=args.controlnet_guidance_scale,
controlnet_cond_scale=args.controlnet_cond_scale,
)
dec_dicts_sr.append(dec_dict_sr)
# Update superres metrics
if inception_metric_sr is not None:
rgb_pred = TF.to_tensor(255 * dec_dict_sr['tok_rgb@448']).to(dtype=torch.uint8, device=device).unsqueeze(0)
rgb_pred = TF.resize(rgb_pred, size=args.image_size_metrics)
inception_metric_sr.update(rgb_pred)
if fid_metric_sr is not None:
fid_metric_sr.update(rgb_pred, real=False)
if clip_metric_sr is not None:
caption_trunc = truncate_caption_for_clip(dec_dict['caption'][0], clip_metric_sr.processor.tokenizer)
clip_metric_sr.update(rgb_pred, caption_trunc)
# Save all-in-one plot
if args.num_log_images == 'all' or (utils.is_main_process() and logged_images_count < int(args.num_log_images)):
plot_conds_and_targets(
args.cond_domains, args.target_domains, dec_dicts,
save_path=os.path.join(args.output_dir, 'plots', f'{sample_idx:06d}.jpg')
)
for sr_idx, sr_dec_dict in enumerate(dec_dicts_sr):
plot_conds_and_targets(
args.sr_cond_domains, args.sr_target_domains, [sr_dec_dict],
save_path=os.path.join(args.output_dir, 'plots', f'{sample_idx:06d}_sr{sr_idx}.jpg')
)
logged_images_count += 1
# Save each modality separately
if args.save_all_outputs:
save_conds_and_targets(
args.cond_domains, args.target_domains, dec_dicts,
save_dir=args.output_dir, sample_idx=sample_idx
)
# Compute and log metrics
results = {}
if inception_metric is not None:
inception_mean, inception_std = inception_metric.compute()
results['inception_mean'] = inception_mean.item()
results['inception_std'] = inception_std.item()
if fid_metric is not None:
fid = fid_metric.compute().item()
results['fid'] = fid
if clip_metric is not None:
clip_score = clip_metric.compute().item()
results['clip_score'] = clip_score
if inception_metric_sr is not None:
inception_mean_sr, inception_std_sr = inception_metric_sr.compute()
results['inception_mean_sr'] = inception_mean_sr.item()
results['inception_std_sr'] = inception_std_sr.item()
if fid_metric_sr is not None:
fid_sr = fid_metric_sr.compute().item()
results['fid_sr'] = fid_sr
if clip_metric_sr is not None:
clip_score_sr = clip_metric_sr.compute().item()
results['clip_score_sr'] = clip_score_sr
metric_logger.update(**results)
# Gather the stats from all processes (they should already be the same since we sync the torcheval metrics after every step)
metric_logger.synchronize_between_processes()
print("Generation results:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if __name__ == '__main__':
args = get_args()
utils.setup_run_name(args)
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)