-
Notifications
You must be signed in to change notification settings - Fork 99
/
save_vq_tokens.py
executable file
·402 lines (340 loc) · 16.5 KB
/
save_vq_tokens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import datetime
import os
import random
import time
from typing import Optional
import numpy as np
import torch
from einops import rearrange, repeat
from PIL import Image
from torch.utils.data import Dataset
from torchvision.datasets import DatasetFolder
from torchvision.datasets.folder import find_classes, make_dataset
from tqdm import tqdm
import fourm.utils as utils
import fourm.utils.clip as clip
from fourm.data import CenterCropImageAugmenter, RandomCropImageAugmenter
from fourm.data.modality_info import MODALITY_TRANSFORMS_DIVAE
from fourm.vq import get_image_tokenizer
import fourm.utils.clip as clip
FEATURE_TASKS = ['CLIP-B16', 'DINOv2-B14', 'DINOv2-B14-global']
IMG_EXTENSIONS = (".jpg", ".jpeg", ".png", ".ppm", ".bmp", ".pgm", ".tif", ".tiff", ".webp", ".jpx", ".gif")
def find_image_extension(root_dir):
for root, dirs, files in os.walk(root_dir):
for file in files:
if file:
return os.path.splitext(file)[1]
return None
class SaveVQDataset(Dataset):
def __init__(self,
root: str,
tokens_dir: str,
crop_settings_dir: str,
task: str,
n_crops: int = 10,
min_crop_scale: float = 0.2,
input_size: int = 224,
mask_value: Optional[float] = None,
task_transforms: dict = MODALITY_TRANSFORMS_DIVAE,
resample_mode: str = 'bilinear',
corrupt_samples_log: Optional[str] = None,
dryrun: bool = False,
force_load_crop: bool = False):
super().__init__()
self.data_root = root
self.tokens_root = os.path.join(root, tokens_dir)
self.crop_settings_root = os.path.join(root, crop_settings_dir)
self.n_crops = n_crops
self.input_size = input_size
self.task = task
self.mask_value = mask_value
self.task_transforms = task_transforms
self.resample_mode = resample_mode
self.force_load_crop = force_load_crop
self.dryrun = dryrun
self.force_load_crop = force_load_crop
self.loader = lambda path: Image.open(path)
self.classes, self.class_to_idx = find_classes(os.path.join(root, task))
if corrupt_samples_log is not None:
task_ext = find_image_extension(os.path.join(root, task))
self.samples = self.get_corrupt_samples(corrupt_samples_log, task_ext)
else:
self.samples = make_dataset(os.path.join(root, task), self.class_to_idx, IMG_EXTENSIONS, None)
self.center_crop_augmenter = CenterCropImageAugmenter(
target_size=self.input_size, hflip=0.0, main_domain=task
)
self.random_crop_augmenter = RandomCropImageAugmenter(
target_size=self.input_size, hflip=0.5,
crop_scale=(min_crop_scale, 1.0),
crop_ratio=(0.75, 1.3333),
main_domain=task
)
def get_corrupt_samples(self, corrupt_samples_log, task_ext):
# Load the log file from find_corrupted_pseudolabels.py
with open(corrupt_samples_log, 'r') as f:
corrupt_samples = f.readlines()
# Remove the error message that was thrown and empty characters
corrupt_samples = [sample.split(':')[-1].strip() for sample in corrupt_samples]
# Extract the folder and file names
corrupt_samples = [sample.split('/')[-2:] for sample in corrupt_samples]
# Construct path
corrupt_samples = [
(os.path.join(self.data_root, self.task, s[0], s[1].replace('.npy', task_ext)), self.class_to_idx[s[0]])
for s in corrupt_samples
]
return corrupt_samples
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
path, _ = self.samples[index]
img = self.loader(path)
img = img.convert("RGB") if self.task in ['rgb', 'normal'] else img
class_id, file_id = path.split('/')[-2:]
file_id = file_id.split('.')[0]
if self.mask_value is not None:
mask_path = os.path.join(self.data_root, 'mask_valid', class_id, f'{file_id}.png')
mask = Image.open(mask_path)
tokens_path = os.path.join(self.tokens_root, class_id, f'{file_id}.npy')
if not self.dryrun:
os.makedirs(os.path.dirname(tokens_path), exist_ok=True)
crop_settings_path = os.path.join(self.crop_settings_root, class_id, f'{file_id}.npy')
# Create or load crop settings
if os.path.exists(crop_settings_path) or self.force_load_crop:
try:
settings = np.load(crop_settings_path)
except:
raise FileNotFoundError
else:
settings = []
# First crop is always non-flipped center crop
crop_coords, _, _, _, _ = self.center_crop_augmenter({self.task: img}, None)
settings.append((*crop_coords, 0))
# Subsequent crops are random
for _ in range(1, self.n_crops):
crop_coords, h_flip, _, _, _ = self.random_crop_augmenter({self.task: img}, None)
settings.append((*crop_coords, 1 if h_flip else 0))
settings = np.array(settings)
if not self.dryrun:
os.makedirs(os.path.dirname(crop_settings_path), exist_ok=True)
np.save(crop_settings_path, settings)
# Perform augmentations and optionally mask images
imgs = []
for i, j, h, w, h_flip in settings:
img_mod = self.task_transforms[self.task].preprocess(img.copy())
img_mod = self.task_transforms[self.task].image_augment(
img_mod, (i,j,h,w), h_flip, None,
(self.input_size, self.input_size), None, self.resample_mode
)
img_mod = self.task_transforms[self.task].postprocess(img_mod)
if self.mask_value is not None:
mask_valid = self.task_transforms['mask_valid'].preprocess(mask.copy())
mask_valid = self.task_transforms['mask_valid'].image_augment(
mask_valid, (i,j,h,w), h_flip, None,
(self.input_size, self.input_size), None, None
)
mask_valid = self.task_transforms['mask_valid'].postprocess(mask_valid)
img_mod[~repeat(mask_valid, '1 h w -> c h w', c=img_mod.shape[0])] = self.mask_value
mask_valid = mask_valid.float() * 2 - 1 # Valid regions -> 1, Masked-out regions -> -1
img_mod = torch.cat([img_mod, mask_valid], dim=0) # Concat image with mask
imgs.append(img_mod)
imgs = torch.stack(imgs)
return imgs, tokens_path
def get_feature_extractor(args):
if args.task == 'CLIP-B16':
teacher_model, _ = clip.load("ViT-B/16", device='cpu', jit=False)
teacher_model = teacher_model.visual
return teacher_model.eval()
elif args.task in ['DINOv2-B14', 'DINOv2-B14-global']:
teacher_model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14')
return teacher_model.eval()
else:
return None
def main(args):
utils.init_distributed_mode(args)
device = torch.device(args.device)
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, _ = get_image_tokenizer(args.tokenizer_id, tokenizers_root=args.tokenizers_root, encoder_only=True)
feature_extractor = get_feature_extractor(args)
num_tasks = utils.get_world_size()
args.num_tasks = num_tasks
global_rank = utils.get_rank()
sampler_rank = global_rank
loader_task = 'rgb' if args.task in FEATURE_TASKS else args.task
dataset = SaveVQDataset(root=os.path.join(args.data_root, args.split), crop_settings_dir='crop_settings',
tokens_dir=f'{args.task}_{args.folder_suffix}', task=loader_task,
min_crop_scale=args.min_crop_scale, n_crops=args.n_crops,
input_size=args.input_size, mask_value=args.mask_value,
resample_mode=args.resample_mode, corrupt_samples_log=args.corrupt_samples_log, force_load_crop=args.force_load_crop)
sampler = torch.utils.data.DistributedSampler(dataset, num_replicas=num_tasks, rank=sampler_rank, shuffle=False)
data_loader = torch.utils.data.DataLoader(dataset, sampler=sampler, batch_size=args.batch_size_dataloader,
num_workers=args.num_workers, drop_last=False)
model.to(device)
if feature_extractor is not None:
feature_extractor.to(device)
print(f"Starting tokenization")
start_time = time.time()
if global_rank == 0 and args.verbose and not args.dryrun:
pbar = tqdm(total=len(data_loader))
else:
pbar = None
for imgs_batch, tokens_paths in data_loader:
# Filter out already saved images
imgs_batch_filtered, tokens_paths_filtered = [], []
for imgs, tokens_path in zip(imgs_batch, tokens_paths):
if not os.path.exists(tokens_path) or args.corrupt_samples_log is not None:
imgs_batch_filtered.append(imgs)
tokens_paths_filtered.append(tokens_path)
if len(imgs_batch_filtered) == 0:
if pbar is not None:
pbar.update(1)
continue
imgs_batch = torch.stack(imgs_batch_filtered)
tokens_paths = tokens_paths_filtered
# Merge batch and number of augmentation dimensions
if 'semseg' in args.task:
imgs_batch = rearrange(imgs_batch, 'b n h w -> (b n) h w')
else:
imgs_batch = rearrange(imgs_batch, 'b n c h w -> (b n) c h w')
# For efficiency, process images with batch size that might be different from loader batch size or num augmentations
sub_batches = imgs_batch.split(args.batch_size, dim=0)
all_tokens = []
for sub_batch in sub_batches:
sub_batch = sub_batch.to(device)
with torch.no_grad():
if 'CLIP' in args.task:
B, C, H, W = sub_batch.shape
P_H, P_W = feature_extractor.conv1.kernel_size
N_H, N_W = H // P_H, W // P_W
sub_batch = feature_extractor(sub_batch, return_final_tokens_no_cls=True)
sub_batch = rearrange(sub_batch, 'b (nh nw) d -> b d nh nw', nh=N_H, nw=N_W)
if 'DINO' in args.task:
B, C, H, W = sub_batch.shape
P_H, P_W = feature_extractor.patch_embed.proj.kernel_size
N_H, N_W = H // P_H, W // P_W
sub_batch = feature_extractor(sub_batch, is_training=True)
if 'global' in args.task:
sub_batch = sub_batch['x_norm_clstoken']
sub_batch = sub_batch.unsqueeze(2).unsqueeze(2)
else:
sub_batch = sub_batch['x_norm_patchtokens']
sub_batch = rearrange(sub_batch, 'b (nh nw) d -> b d nh nw', nh=N_H, nw=N_W)
tokens = model.tokenize(sub_batch)
if tokens.size(-1)==1: # For the global embedding tokens, squeeze the last dimension
tokens = tokens.squeeze(2)
tokens = rearrange(tokens, "b h w -> b (h w)")
tokens = tokens.detach().cpu().numpy().astype(np.int16)
all_tokens.append(tokens)
all_tokens = np.concatenate(all_tokens)
all_tokens = rearrange(all_tokens, '(b n) d -> b n d', n=args.n_crops)
for tokens, tokens_path in zip(all_tokens, tokens_paths):
if args.dryrun:
print(f'Dryrun: rank {global_rank} -> {tokens_path}')
else:
np.save(tokens_path, tokens)
if pbar is not None:
pbar.update(1)
#torch.distributed.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Tokenization time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog="VQ token saver")
parser.add_argument(
"--tokenizer_id", type=str, default='cc12m/rgb_ViTB-UNetP4_16k_224-448',
help="ID of tokenizer to load."
)
parser.add_argument(
"--tokenizers_root", type=str, default='./tokenizer_ckpts',
help="Path where tokenizer checkpoints are saved."
)
parser.add_argument(
"--data_root", type=str, default='/path/to/dataset',
help="Path to dataset root"
)
parser.add_argument(
"--split", type=str, default='train',
help="train or val"
)
parser.add_argument(
"--n_crops", type=int, default='1',
help="Number of crops to save. If 1, only a center crop will be saved. \
If > 1, first image will be center cropped, the subsequent ones will be randomly cropped."
)
parser.add_argument(
"--min_crop_scale", type=float, default=0.8,
help="Minimum crop scale (Only for n_crops > 1)"
)
parser.add_argument(
"--input_size", type=int, default=224,
help="Image size"
)
parser.add_argument(
"--task", type=str, default='rgb',
help="Task name"
)
parser.add_argument(
"--mask_value", type=float, default=None,
help="Optionally set masked-out regions to this value after data augs (default: %(default)s)"
)
parser.add_argument(
"--resample_mode", type=str, default=None,
help="PIL resample mode for resizing loaded images. One out of ['bilinear', 'bicubic', 'nearest', None]. (default: %(default)s)"
)
parser.add_argument(
"--corrupt_samples_log", type=str, default=None,
help="Path to log file with corrupted samples from find_corrupted_pseudolabels.py. \
If provided, only corrupted samples will be re-tokenized."
)
parser.add_argument(
"--verbose", action='store_true', default=False,
help="Set to enable progress bar"
)
parser.add_argument(
"--dryrun", action='store_true', default=False,
help="Set to do a dry run that creates the tokens and prints the paths without saving them to disk."
)
parser.add_argument('--device', default='cuda', help='Device to use for tokenization')
parser.add_argument('--seed', default=0, type=int, help='Random seed')
parser.add_argument(
"--folder_suffix", type=str,
default='dvae_BUa_224',
help="Suffix to add to the folder under which the tokens are saved."
)
parser.add_argument('--num_workers', default=16, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
parser.add_argument('--batch_size_dataloader', default=64, type=int,
help='Dataloader batch size (default: %(default)s)')
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (default: %(default)s)')
# Distributed parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--force_load_crop', action='store_true',
help='Make sure to load crops locally, otherwise break the code.')
args = parser.parse_args()
print("Force loading existing crop settings: {}".format(args.force_load_crop))
main(args)