-
Notifications
You must be signed in to change notification settings - Fork 99
/
train_wordpiece_tokenizer.py
70 lines (59 loc) · 3.05 KB
/
train_wordpiece_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
from fourm.utils.tokenizer import train_unified_wordpiece_tokenizer
from fourm.utils.tokenizer import generate_sentinel_tokens, generate_coord_tokens, generate_object_class_tokens
def get_args():
parser = argparse.ArgumentParser('Train unified WordPiece tokenizer', add_help=False)
parser.add_argument('--text_files', type=str, default='/datasets/imagenet_multitask/metadata/all_captions_BLIP.txt',
help="Files to train the tokenizer on, separated by a double dash '--'")
parser.add_argument('--save_file', type=str, default="utils/tokenizer/trained/default_tokenizer.json",
help="Path to the saved tokenizer. Can then be loaded using Tokenizer.from_file(path).")
parser.add_argument('--vocab_size', type=int, default=30_000,
help="Vocabulary size")
parser.add_argument('--num_sentinels', type=int, default=200, help="Number of sentinel tokens")
parser.add_argument('--coord_bins', type=int, default=1000, help="Number of coordinate bins (for detection)")
parser.add_argument('--object_classes', type=str, default='coco', choices=['none', 'coco'],
help="Special tokens for detection instances (e.g., instance class names from the COCO dataset)")
parser.add_argument('--lowercase', action='store_true')
parser.add_argument('--no_lowercase', action='store_false', dest='lowercase')
parser.set_defaults(lowercase=True)
return parser.parse_args()
def train_tokenizer(args):
files = args.text_files.split("--")
# Get special tokens
sentinel_tokens = generate_sentinel_tokens(num=args.num_sentinels)
coord_tokens = generate_coord_tokens(bins=args.coord_bins)
if args.object_classes == 'none':
object_class_tokens = None
else:
object_class_tokens = generate_object_class_tokens(args.object_classes)
print(f"Training tokenizer on files: {files}")
# Train tokenizer
tokenizer = train_unified_wordpiece_tokenizer(
files=files,
vocab_size=args.vocab_size,
sentinel_tokens=sentinel_tokens,
coord_tokens=coord_tokens,
object_class_tokens=object_class_tokens,
lowercase=args.lowercase,
)
# Create directory of target file if it doesn't exist
os.makedirs(os.path.dirname(args.save_file), exist_ok=True)
tokenizer.save(path=args.save_file)
print(f"Tokenizer saved to: {args.save_file}!")
if __name__ == "__main__":
args = get_args()
train_tokenizer(args)