-
Notifications
You must be signed in to change notification settings - Fork 2
/
monerokon24gfft.tex
228 lines (185 loc) · 8.53 KB
/
monerokon24gfft.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
\documentclass[shadesubsections,compress,14pt,mathserif]{beamer}
\usepackage[danish]{babel}
\usepackage{tikz,circuitikz}
\usetikzlibrary{shapes, positioning}
\usenavigationsymbolstemplate{}
\usepackage{pgfplots}
\usepackage[absolute,overlay]{textpos}
\usepackage{amsthm,amsfonts}
%\usepackage[T1]{fontenc}
% \usepackage{fullpage}
% Dokumentets sprog
%\usepackage{mathtools}
%\usepackage{pxfonts}
\usepackage{eulervm}
\usepackage[export]{adjustbox}
\everymath{\color{purple}}
% Class options include: notes, notesonly, handout, trans,
% hidesubsections, shadesubsections,
% inrow, blue, red, grey, brown
% Theme for beamer presentation.
%\usepackage{beamertheme}
% Other themes include: beamerthemebars, beamerthemelined,
% beamerthemetree, beamerthemetreebars
\newcommand{\adv}{\ensuremath{\mathcal A}}
\newcommand{\F}{\ensuremath{{\mathbb F}}}
\renewcommand{\P}{\ensuremath{{\mathbb P}}}
\newcommand{\Z}{\ensuremath{{\mathbb Z}}\xspace}
\newcommand{\Fclosure}{\ensuremath{{\overline{\mathbb{F}}}_p}}
\newcommand{\set}[1]{\ensuremath{\left\{#1\right\}}}
\newcommand{\bin}{\ensuremath{\set{0,1}}}
\newcommand{\cube}{\ensuremath{\bin^n}}
\newcommand{\sett}[2]{\ensuremath{\left\{#1\right\}_{#2}}}
\newcommand{\enc}[1]{\ensuremath{\left[#1\right ]}}
% \newcommand{\kzg}[1]{\ensuremath{\enc{#1(x)}}}
\newcommand{\cm}{\ensuremath{\mathsf{cm}}}
\newcommand{\kzg}[1]{\cm(#1)}
\newcommand{\open}[1]{\ensuremath{\mathsf{open}(#1)}}
\newcommand{\verify}[1]{\ensuremath{\mathsf{verify}(#1)}}
\newcommand{\defeq}{\ensuremath{:=}}
\newcommand{\helper}{\ensuremath{\mathcal{H}}}
\newcommand{\ver}{\ensuremath{\mathcal{V}}}
\newcommand{\prv}{\ensuremath{\mathcal{P}}}
\newcommand{\polysofdeg}[1]{\F_{< #1}[X]}
% \newcommand{\endoss}{\ensuremath{\mathrm{END}_E}}
\newcommand{\hl}[1]{\textbf{\textit{#1}}}
\newcommand{\polys}{\F[X]}
\newcommand{\acc}{{\mathbf{acc}}}
\newcommand{\ideal}{\mathbf{I}}
\newcommand{\gen}{\alpha}
\newcommand{\spac}{\\ \vspace{0.2in} \noindent}
\newcommand{\polylog}{\ensuremath{\mathsf{polylog}}\xspace}
% \renewcommand{\bf}{\begin{frame}}
% \newcommand{\ef}{\end{frame}}
%\setbeamersize{text margin left=3mm,text margin right=3mm}
\newcommand{\nl}{\\ \pause \vspace{0.2in}}
\newcommand{\nlnp}{\\ \vspace{0.2in}}
\newcommand{\stitle}[1]{{\large{\textcolor{purple}{\emph{#1}}}}}
\DeclareMathAlphabet{\mathpgoth}{OT1}{pgoth}{m}{n}
\newcommand{\cq}{\mathpgoth{cq} }
\newcommand{\cqstar}{\ensuremath{\mathpgoth{cq^{\mathbf{*}} }}\xspace}
\newcommand{\flookup}{\ensuremath{\mathsf{\mathpgoth{Flookup}}}\xspace}
\newcommand{\baloo}{\ensuremath{\mathrm{ba}\mathit{loo}}\xspace}
% \newcommand{\caulkp}{\ensuremath{\mathsf{\mathrel{Caulk}\mathrel{\scriptstyle{+}}}}\xspace}
\newcommand{\caulk}{\ensuremath{\mathsf{Caulk}}\xspace}
\newcommand{\plookup}{\ensuremath{\mathpgoth{plookup}}\xspace}
\newcommand{\srs}{\ensuremath{\mathsf{srs}}}
\newcommand{\tablegroup}{\ensuremath{\mathbb{H}}\xspace}
\newcommand{\V}{\ensuremath{\mathbf{V} }\xspace}
% \newcommand{\caulk}{{\mathsf{Caulk}}}
% \newcommand{\caulkp}{{\mathsf{\mathrel{Caulk}\mathrel{\scriptstyle{+}}}}}
\newcommand{\bigspace}{\ensuremath{\mathbb{V}}}
%\setbeamersize{text margin left=3mm,text margin right=3mm}
\title{\large{GFFT on projective line}} % Enter your title between curly braces
\author{\small{Ariel Gabizon}\\ % Enter your name between curly braces
\tt{\footnotesize{Zeta Function Technologies} } } % Enter your institute name between curly braces
\date{} % Enter the date or \today between curly braces
%\usefonttheme{professionalfonts}
%\usefonttheme[onlymath]{serif}
\begin{document}
\boldmath
% Creates title page of slide show using above information
\begin{frame}
\titlepage
\end{frame}
% \begin{frame}
% \large{plonk is a protocol to make short proofs about circuit satisfiability.}
% \begin{figure}
% \includegraphics[width=260pt]{circuit.png}
% \end{figure}
% \end{frame}
\begin{frame}
\frametitle{FFT Reminder}
$S=\set{g,g^2,\ldots,g^{n}=1},n=2^k$\nl
Want to evaluate $f(X)\in \F[X]$ of deg $<n$ on $S$.\pause
Use recursive formula
\[f(X)=f_e(X^2)+X\cdot f_o(X^2)\]
Since the map $x\to x^2$ is 2-to-1 on $S$, this reduces $n$ evals of $f$ to $n/2$ evals of two deg $n/2$ polys.\nl
Requires $n|p-1$, where $p=|\F|$.
Can we do something when $n|(p+1)$ instead??
% \begin{itemize}
% \item
% \end{itemize}
\end{frame}
\begin{frame}
\frametitle{Reflection - why does FFT work?}
$S=\set{g,g^2,\ldots,g^{n}=1},n=2^k$\nl
The map $\sigma(x)=g\cdot x$ goes over $S$ as a cycle.\nl
\begin{itemize}
\item Let $\tau = \sigma^{n/2}$. So $\tau(x)=-x$, and $\tau^2(x)=x$.
\item The elements of $S$ split into disjoint pairs $(a,-a)$.\pause
\item Define $N(X)=X \cdot \tau(X)=-X^2$. $N$ maps elements of a pair to the same output.\nl
\textit{Can we find a set of size $p+1$ with a similar cyclical $\sigma$?}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{The Projective line and fractional transformations}
How to get set $\P$ of size $2^k$?
Look at \emph{projective line} $\P\defeq \F\cup\infty$\nl
Take fractional map:
$\sigma(x)= \frac{1}{ax+b}$
Define: $\sigma(-b/a)=\infty,\sigma(\infty)=0$.\nl
\textbf{claim:}For the right choice of $a,b$ $\sigma$ makes a cycle over all of \P!
\end{frame}
\begin{frame}
\frametitle{How do people formally represent the projective line?}
\textbf{Projective coordinates:}
Represent $a\in F$ by $(c,d)$ with $a=c/d$ e.g. $(a,1)$.\nlnp
So $\infty=(1,0)$.\nl
\end{frame}
\begin{frame}
\frametitle{How do people formally represent the projective line?}
\textbf{As a circle in the plane:}\nlnp
\begin{circuitikz}
% Draw the real line
\draw[thick] (-2,0) -- (2,0);
\node at (2.5,0) {};
% Draw the larger circle a bit lower above the real line
\draw (0,1.5) node[circle,draw,minimum size=1.5cm] (circle) {};
\node at (0,1.5) {};
\filldraw (circle.north) circle (2pt) node[above] {$\infty$};
% Draw a line from the top of the circle to somewhere on the real line
\draw (circle.north) -- (1,0);
% Add little black dots at the connection points
\filldraw (circle.north) circle (2pt);
\filldraw (1,0) circle (2pt);
% Connect the circle to the real line with a dashed line
\draw[dashed] (0,0) -- (circle);
% Calculate the intersection point of the line and the circle
\coordinate (intersection) at ($(circle) + (-41:0.75cm)$);
\filldraw (intersection) circle (2pt);
\end{circuitikz}
\vspace{0.3in}\nlnp
\textit{See Circle STARK paper [HLP24] for this approach}
\end{frame}
\begin{frame}
\frametitle{How do people formally represent the projective line?}
\textbf{As places of the field $K=\F(X)$:}\nl
{\textcolor{green} {Dfn:}} A \emph{valuation ring} of $R\subset \F(X)$ is a subring such that
$\forall y\in K$ $y\in R$ or $1/y\in R$ (or both).\nl
% \textit{\small{ Reminder:ring is set of elements closed under add/mult but maybe no divide}}\nl
\textbf{Example:} Choose $a\in F$, take $R_a=\{f(X)/g(X)| f,g\in \F[X], g(a)\neq 0 \}$.\nl
% \textit{Reminder: an ideal $I\subset R$ is closed under addition; and multiplication by \emph{any element of $R$}}
% The unique maximal ideal of $R_a$ is $I_a=\set{(X-a)\cdot r|r\in R}$
% \textit{Cool thing: $R_a/I_a=\F$. And we can evaluate $r\in R$ at $a$ by taking $r\;\mod\; I$}\nl
Valuation rings in $K$, are also called ``places'' of $K$.
\end{frame}
\begin{frame}
The unique maximal ideal of $R_a$ is $I_a=\set{(X-a)\cdot r|r\in R}$\nl
\textit{Cool thing: $R_a/I_a=\F$. And we can evaluate $r\in R_a$ at $a$ by taking $r\;\mod\; I_a$}\nl
This gives the same result as ``normal'' evaluation!
\end{frame}
\begin{frame}
\frametitle{The infinity point in the algebraic representation}
There is \emph{one more} place of degree one in $K$:
$R_{\infty}=\set{f(X)/g(X)|deg(f)\leq deg(g)}$. \nl
$R_{\infty}=$ ``the set of functions that can be evaluated at infinity''
\end{frame}
\begin{frame}
\textit{What does this last part have to do with FFT?}\nlnp
Like in regular FFT - we'll end up needing to represent $f(X)$ as a combination of two functions $f_e(N(X)), f_o(N(X))$
of half the ``degree''; where $N$ will be a degree two rational function.\nl
Working within the function field gives us convenient tools to construct the right bases for representing $f,f_e,f_o$,
and defining degree in the right way.
\end{frame}
\end{document}