-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_block_workflow_scorer.py
1327 lines (1155 loc) · 49.6 KB
/
run_block_workflow_scorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=text-generation
"""
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional
from functools import partial
import datasets
import transformers
from datasets import load_dataset, load_metric
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
AutoConfig,
AutoModel,
AutoModelForSequenceClassification,
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
is_torch_tpu_available,
set_seed,
)
from transformers.testing_utils import CaptureLogger
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils.versions import require_version
from dataproc.datacollator import (
mask_context_torch_data_collator,
replace_with_unknown_agent_torch_data_collator
)
import random
import numpy as np
import os
import torch
# def set_rseed(seed: int = 42) -> None:
# np.random.seed(seed)
# random.seed(seed)
# torch.manual_seed(seed)
# torch.cuda.manual_seed(seed)
# # When running on the CuDNN backend, two further options must be set
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
# # Set a fixed value for the hash seed
# os.environ["PYTHONHASHSEED"] = str(seed)
# print(f"Random seed set as {seed}")
set_seed(42)
from model.constants import * #(
# CONVO_START,
# CONVO_END,
# CUS_START,
# CUS_END,
# EOS,
# PAD,
# REP_START,
# REP_END,
# REP_ACTION_START,
# REP_ACTION_END,
# RESPONSE_PLACEHOLDER,
# REWARD_ONE,
# REWARD_ZERO,
# SOS,
# UNK,
# sanitized_tokens,
# )
LABEL2IDX = {'shipping-status': 0, 'notify-team': 1, 'pull-up-account': 2, 'search-shirt': 3, 'try-again': 4, \
'ask-the-oracle': 5, 'make-password': 6, 'log-out-in': 7, 'record-reason': 8, 'subscription-status': 9, 'validate-purchase': 10, \
'make-purchase': 11, 'send-link': 12, 'update-account': 13, 'search-faq': 14, 'instructions': 15, 'membership': 16, 'offer-refund': 17,\
'search-policy': 18, 'None': 19, 'enter-details': 20, 'search-membership': 21, 'search-boots': 22, 'select-faq': 23, 'verify-identity': 24,\
'search-jeans': 25, 'promo-code': 26, 'search-jacket': 27, 'update-order': 28, "search-timing": 29, "search-pricing":30}
LABEL2IDX = {0:0, 1:1}
IDX2LABEL = { v:k for k,v in LABEL2IDX.items()}
from collections import Counter
from nltk import sent_tokenize
from torch.utils.data import DataLoader
from tqdm import tqdm
PRINT = False
def example_process(dataset_type: str, datum, do_filter = True):
strings = []
wfs = []
turns = datum["turns"]
try:
flow = turns[0]["targets"][0]
except:
flow = None
if dataset_type == "kb":
kb_flow = kb[flow]
string = CONTEXT +WORKFLOW +", ".join([str(x) for x in kb_flow]) + WORKFLOW_END
else:
string = CONTEXT
for turn in turns:
speaker = turn["speaker"]
text = turn["text"]
if speaker == "user":
string += USER + text + USER_END
elif speaker == "action":
if dataset_type == "b1":
pass
else:
button = turn["targets"][2]
slot = turn["targets"][3]
string += ACTION +button + " " + ", ".join(slot).strip() + ACTION_END
elif speaker == "system":
if True: # dataset_type == "b1" or dataset_type == "b2" or dataset_type == "kb":
string += RESPONSE + text + RESPONSE_END
workflow = turn["workflow_action"]
if workflow != None:
workflow = workflow[2]
elif "future" in dataset_type:
workflow = turn["workflow_action"]
if workflow != [None]:
workflow = [x[2] if x is not None else x for x in workflow ]
string += WORKFLOW +", ".join([str(x) for x in workflow]) + WORKFLOW_END +RESPONSE + text + RESPONSE_END
#wfs.append(workflow)
else:
workflow = turn["workflow_action"]
if workflow != None:
workflow = workflow[2]
string += WORKFLOW + str(workflow) + WORKFLOW_END + RESPONSE + text + RESPONSE_END
wfs.append(str(workflow))
strings.append(string)
else:
print("impossib")
exit()
end_string = strings[-1]
split = end_string.split(RESPONSE)
assert len(split)-1 == len(wfs), f"{len(split)}-1 != {len(wfs)}"
data = []
for i, s in enumerate(split[1:]):
first = RESPONSE.join(end_string.split(RESPONSE)[:i+1]).strip() +RESPONSE
second = RESPONSE.join(end_string.split(RESPONSE)[i+1:]).strip() #+RESPONSE #string.split(RESPONSE)[i:].strip()
#print("="*30)
#print("first:", first)
#print("second:", second)
second = RESPONSE_END.join(second.split(RESPONSE_END)[:-1])
for stoken in [ACTION, CONTEXT]:
second = second.split(stoken)[0]
# also get only up until the last response (no user or other stuff)
#print("actionless second:", second)
#dic = {"context": first, "response": second, "subflow":flow, "true_wf":wfs[i]}
# print("="*30)
# print(first)
# print(wfs[i])
# print(second)
if not first.strip().endswith(ACTION_END+RESPONSE) and do_filter:
#print("skipping")
#print(first)
continue
else:
#print('not skipping')
pass
if True:
context = second.replace(USER, "\nClient: ")
context = context.replace(RESPONSE, "\nAgent: ")
context = context.replace(WORKFLOW, "\nNext Action: ")
context = context.replace(ACTION, "\nAction: ")
for stoken in SPECIAL_TOKEN_SET:
context = context.replace(stoken, "")
context = context.strip()
#
#context = "\nNext Action: ".join(context.split("\nNext Action: ")[:-1]).strip()
second = "Agent: "+context
# print("="*30)
# print(second)
# print("-"*30)
# print("Workflow:", wfs[i])
# print()
wf = wfs[i]
dic = { "original_action": wf, "random_action": None, "negative_action":None,\
"neg_response": None, "pos_response": second, "random_response": None, "context": first}
if PRINT:
print(dic)
# if WORKFLOW not in first or not first.strip().split(WORKFLOW)[-2].endswith(ACTION_END):
# continue
data.append(dic)
return data
class CustomTrainer(Trainer):
def forward(self, model, inputs):
ids = inputs["input_ids"]
att = inputs["attention_mask"]
dim = ids.shape[1]
flattened_ids = ids.reshape(ids.shape[0]*dim, ids.shape[-1])
flattened_att = att.reshape(att.shape[0]*dim, att.shape[-1])
outputs = model(input_ids=flattened_ids, attention_mask=flattened_att)
logits = outputs[0]
logits = logits.reshape(ids.shape[0], dim, -1)
# ai's parallelized version: not really faster
# 2 epochs 4:42 vs 4:43 (accuracy was better this time, 80)
# 10 epochs 24:04 vs
# 10 epochs 90.5 accuracy
pos_logits = logits[:, 0:dim//2, :].unsqueeze(2)
neg_logits = logits[:, dim//2:, :].unsqueeze(1)
diffs = pos_logits - neg_logits
diffs = diffs.reshape(-1, diffs.shape[-1])
diff_sig = diffs.sigmoid()
loss = -torch.mean(torch.log(diff_sig))
# pos_logits = logits[:, 0:dim//2, :]
# neg_logits = logits[:, dim//2:, :]
# diffs = []
# for i in range(dim//2):
# pl = pos_logits[:, i, :]
# for j in range(dim//2):
# nl = neg_logits[:, j, :]
# diff = pl - nl
# diffs.append(diff)
# diffs = torch.stack(diffs)
# diff_sig = diffs.sigmoid()
# loss = -torch.mean(torch.log(diff_sig))
return loss, pos_logits.squeeze(), neg_logits.squeeze()
def compute_loss(self, model, inputs):
# inputs is a BSZ x 2 x SEQLEN x HIDDEN
loss, pos_logits, neg_logits = self.forward(model, inputs)
# ids = inputs["input_ids"]
# att = inputs["attention_mask"]
# flattened_ids = ids.reshape(ids.shape[0]*2, ids.shape[-1])
# flattened_att = att.reshape(att.shape[0]*2, att.shape[-1])
# outputs = model(input_ids=flattened_ids, attention_mask=flattened_att)
# logits = outputs[0]
# logits = logits.reshape(ids.shape[0], 2, -1)
# pos_logits = logits[:, 0, :]
# neg_logits = logits[:, 1, :]
# diff = pos_logits - neg_logits
# diff_sig = diff.sigmoid()
# loss = -torch.mean(torch.log(diff_sig))
return loss
def evaluate(
self,
eval_dataset = None,
ignore_keys = None,
metric_key_prefix = "eval",
**gen_kwargs,
):
#return {"empty":"soul"}
#dataloader = DataLoader(eval_dataset, batch_size = self._eval_batch_size)
dataloader = self.get_eval_dataloader( eval_dataset)
results = []
pos_scores, neg_scores = [], []
for batch in dataloader:
batch = {k:v.to(self.model.device) for k,v in batch.items()}#batch.to(self.model.device)
loss, pos_logits, neg_logits = self.forward(self.model, batch)
#print(pos_logits.shape, neg_logits.shape)
#if len(pos_logits.shape) != 2 and len(neg_logits.shape) != 2:
try:
correct = pos_logits[:, 0, :] > neg_logits[:, 0, :]
except:
correct = pos_logits[0] > neg_logits[0]
#print(correct.shape)
#print(correct)
try:
results += correct.tolist()
except:
results += [ correct.cpu()]
pos_scores += pos_logits.sigmoid().tolist()
neg_scores += neg_logits.sigmoid().tolist()
return { "accuracy": np.average(results), "pos_scores": np.average(pos_scores), "neg_scores":np.average(neg_scores)}
# gen_kwargs = gen_kwargs.copy()
# if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
# gen_kwargs["max_length"] = self.args.generation_max_length
# gen_kwargs["num_beams"] = (
# gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams
# )
# self._gen_kwargs = gen_kwargs
# return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
"""
Probably need to subclass both evaluate and predict_step https://huggingface.co/transformers/v3.5.1/main_classes/trainer.html
"""
# def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys=False):
# # inputs is a BSZ x 2 x SEQLEN x HIDDEN
# ids = inputs["input_ids"]
# att = inputs["attention_mask"]
# print(ids.shape, att.shape)
# pos_ids = ids[:,0,:].to(model.device)
# pos_att = att[:,0,:].to(model.device)
# #print(pos_ids.shape, pos_att.shape, neg_ids.shape, neg_att.shape)
# #print(pos_ids, pos_att)
# #print(neg_ids, neg_att)
# pos_outputs = model(input_ids=pos_ids, attention_mask=pos_att)
# pos_logits = pos_outputs[0]
# neg_ids = ids[:,1,:].to(model.device)
# neg_att = att[:,1,:].to(model.device)
# neg_outputs = model(input_ids=neg_ids, attention_mask=neg_att)
# neg_logits = neg_outputs[0]
# #print(pos_logits.shape, neg_logits.shape)
# #print(pos_logits, neg_logits)
# diff = pos_logits - neg_logits
# diff_sig = diff.sigmoid()
# loss = -torch.mean(torch.log(diff_sig))
# if prediction_loss_only:
# return loss
# else:
# return loss, pos_logits, neg_logits
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
# check_min_version("4.20.0.dev0")
require_version(
"datasets>=1.8.0",
"To fix: pip install -r examples/pytorch/language-modeling/requirements.txt",
)
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
model_type: Optional[str] = field(
default=None,
metadata={
"help": "If training from scratch, pass a model type from the list: "
+ ", ".join(MODEL_TYPES)
},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
},
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name"
},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained tokenizer name or path if not the same as model_name"
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": "Where do you want to store the pretrained models downloaded from huggingface.co"
},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
},
)
model_revision: str = field(
default="main",
metadata={
"help": "The specific model version to use (can be a branch name, tag name or commit id)."
},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
)
},
)
resid_pdrop: float = field(
default=-1,
metadata={ "help": "dropout rate. Negative numbers means using the default value." },
)
def __post_init__(self):
if self.config_overrides is not None and (
self.config_name is not None or self.model_name_or_path is not None
):
raise ValueError(
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None,
metadata={"help": "The name of the dataset to use (via the datasets library)."},
)
dataset_config_name: Optional[str] = field(
default=None,
metadata={
"help": "The configuration name of the dataset to use (via the datasets library)."
},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a text file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
block_size: Optional[int] = field(
default=None,
metadata={
"help": (
"Optional input sequence length after tokenization. "
"The training dataset will be truncated in block of this size for training. "
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
},
)
overwrite_cache: bool = field(
default=False,
metadata={"help": "Overwrite the cached training and evaluation sets"},
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
keep_linebreaks: bool = field(
default=True,
metadata={"help": "Whether to keep line breaks when using TXT files or not."},
)
# new arguments
agent_id_file: Optional[str] = field(
default=None, metadata={"help": "The agent id token data file (a text file)."},
)
mask_context: bool = field(
default=False,
metadata={
"help": (
"Will mask out predictions before <_rep_start_> token."
)
},
)
one_example_per_block: bool = field(
default=False,
metadata={
"help": (
"Will add each context, response pair as a new line in training data block."
)
},
)
add_sanitized_tokens: bool = field(
default=False, metadata={"help": "Add sanitized tokens into vocab."},
)
replace_unknown_agent_prob: float = field(
default=0.0, metadata={"help": "Probability of replacing agent id with unknown agent id."},
)
data_mode: Optional[str] = field(
default="neg", metadata={"help": "Comparison data to use either neg or random"}
)
do_filter: Optional[bool] = field(
default=True, metadata={"help": "do filter of examples in example_process"}
)
def __post_init__(self):
if (
self.dataset_name is None
and self.train_file is None
and self.validation_file is None
):
raise ValueError(
"Need either a dataset name or a training/validation file."
)
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in [
"csv",
"json",
"txt",
], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in [
"csv",
"json",
"txt",
], "`validation_file` should be a csv, a json or a txt file."
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, TrainingArguments)
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
# send_example_telemetry("run_clm", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif (
last_checkpoint is not None and training_args.resume_from_checkpoint is None
):
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
data_files = {}
dataset_args = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = (
data_args.train_file.split(".")[-1]
if data_args.train_file is not None
else data_args.validation_file.split(".")[-1]
)
if extension == "txt":
extension = "text"
dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
elif extension =="json":
extension = "json"
import json
with open(data_args.train_file, "r") as fh:
df = json.load(fh)#[:10] # remove [:10]
from datasets import Dataset, DatasetDict
def pick_sentence(sent, pos):
if len(sent.split()) <= len(pos.split()):
return sent
sents = sent_tokenize(sent)
return sents[np.argmax([len(x) for x in sents])]
def process(split):
res = { "text":[], "label":[]} #, "type":[], "action":[]}
pos_actions, neg_actions = [], []
data = [ example_process("b2", d, data_args.do_filter) for d in split]
data = [ x for y in data for x in y]
# do the random matching
print("Start random generating... (naive)")
new_data = []
for d in tqdm(data):
#print(d)
while True:
cand = random.choice(data)
if cand["original_action"] != d["original_action"]:
break
#dic = { "original_action": wf, "random_action": None, "negative_action":None \
#"neg_response": None, "pos_response": second, "random_response": None, "context": first}
d["random_action"] = cand["original_action"]
d["negative_action"] = cand["original_action"]
d["neg_response"] = cand["pos_response"]
d["random_response"] = cand["pos_response"]
new_data.append(d)
for d in new_data:
pos_act = d["original_action"]
# if pos_act == "None":
# continue
# #if random.randint(0,10) >= 2:
# # continue
neg_act = d["negative_action"]
random_act = d["random_action"]
pos_response = d["pos_response"]#.lower()
try:
neg_response = d["neg_response"]
except:
neg_response = d["generated"]
#neg_response = pick_sentence(neg_response, pos_response).lower() #sent_tokenize(neg_response)[0].lower()
random_response = d["random_response"]#.lower()
pos_responses = [ pos_response] # + pos_paraphrases
if data_args.data_mode == "neg":
neg_responses = [ neg_response] #+ [ pick_sentence(x, p) for x,p in zip(neg_paraphrases, pos_paraphrases) ] #neg_paraphrases
else:
neg_responses = [random_response] #+ neg_paraphrases # randmode
strings = [ [f"{pr}\nWorkflow Action: {pos_act}" for pr in pos_responses ] + [f"{nr}\nWorkflow Action: {pos_act}" for nr in neg_responses ] ]
labels = [ [ 1 for x in pos_responses ] + [ 0 for x in neg_responses] ]
res["text"] += strings #[ d["input"].strip()] #+"\n"+d["target"]+"\n" ] # last \n is need bc of blocking
res["label"] += labels #[ LABEL2IDX[label]]
pos_actions += [pos_act]
neg_actions += [neg_act]
pos_counter = Counter(pos_actions)
neg_counter = Counter(neg_actions)
print("="*30)
#print(split)
print("Pos stats:", pos_counter)
print("Neg stats:", neg_counter)
return res
train = process(df["train"])
validation = process(df["dev"])
train = Dataset.from_dict(train)
validation = Dataset.from_dict(validation)
raw_datasets = DatasetDict({"train": train, "validation": validation})
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
extension,
data_files=data_files,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
**dataset_args,
)
raw_datasets["train"] = load_dataset(
extension,
data_files=data_files,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
**dataset_args,
)
# print(raw_datasets.keys())
print("train size:", len(raw_datasets["train"]))
print("val size:", len(raw_datasets["validation"]))
# print(len(raw_datasets["train"][0]))
rint = random.randint(0,len(raw_datasets["train"])-1)
print("random train sample:", (raw_datasets["train"][rint]))
while False:
rint = random.randint(0,len(raw_datasets["train"])-1)
print("random train sample:", (raw_datasets["train"][rint]))
input()
# exit()
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, **tokenizer_kwargs
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, **tokenizer_kwargs
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(
model_args.config_name, **config_kwargs)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(
model_args.model_name_or_path, **config_kwargs)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}")
config.update_from_string(model_args.config_overrides)
logger.info(f"New config: {config}")
if model_args.resid_pdrop >= 0:
config.resid_pdrop = model_args.resid_pdrop
if model_args.model_name_or_path:
config.num_labels = 1 #len(LABEL2IDX)
#config.id2label = IDX2LABEL
#config.label2id = LABEL2IDX
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
print("sepcfc")
exit(1)
model = AutoModelForCausalLM.from_config(config)
n_params = sum(
dict((p.data_ptr(), p.numel())
for p in model.parameters()).values()
)
logger.info(
f"Training new model from scratch - Total size={n_params/2**20:.2f}M params"
)
if data_args.agent_id_file is not None:
with open(data_args.agent_id_file) as f:
agent_id_tokens = [line.rstrip() for line in f]
else:
agent_id_tokens = []
additional_special_tokens = [
CONTEXT,
CONTEXT_END,
USER,
USER_END,
SYSTEM,
WORKFLOW,
WORKFLOW_END,
ACTION,
ACTION_END,
RESPONSE,
RESPONSE_END
# REP_START, # not using now
# SOS,
# EOS,
# UNK,
# PAD,
# CONVO_START,
# CONVO_END,
# CUS_START,
# CUS_END,
# REP_START,
# REP_END,
# REP_ACTION_START,
# REP_ACTION_END,
# REWARD_ONE,
# REWARD_ZERO,
# RESPONSE_PLACEHOLDER,
]
if data_args.add_sanitized_tokens:
additional_special_tokens += sanitized_tokens
additional_special_tokens += agent_id_tokens
tokenizer.add_special_tokens(
{
# "bos_token": SOS,
# "eos_token": EOS,
# "unk_token": UNK,
# "cls_token": SOS,
# "sep_token": EOS,
# "pad_token": PAD,
#"additional_special_tokens": additional_special_tokens,
}
)
model.resize_token_embeddings(len(tokenizer))
print("Model tokenizer resized to:", len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
column_names = raw_datasets["train"].column_names
else:
column_names = raw_datasets["validation"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
# print(text_column_name)
# exit()
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
tok_logger = transformers.utils.logging.get_logger(
"transformers.tokenization_utils_base"
)
#print(raw_datasets)
def tokenize_function(examples):
# print(examples[text_column_name])
# exit()
#print(examples)
#print(len(examples))