-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathForecast.py
121 lines (92 loc) · 3.59 KB
/
Forecast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
"""
Created on Sun Sep 1 20:35:41 2019
@author: awais
"""
import numpy as np
import itertools
import matplotlib.pyplot as plt
import pandas as pd
import statsmodels.api as sm
import matplotlib
def train_model(train):
train = train[["date", "y"]]
train.columns = ["date", "y"]
train.date = pd.to_datetime(train.date)
# aggregate data on days
df = train.groupby('date')['y'].sum().reset_index()
df = df.set_index('date')
'''
ARIMA models are denoted with the notation ARIMA(p, d, q).
These three parameters account for seasonality, trend, and noise in data
'''
p = d = q = range(0, 2)
pdq = list(itertools.product(p, d, q))
seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, q))]
lis0 = [] # Save aic over the iterations
lis1 = [] # Save pdq params for all iterations
lis2 = [] # Save seasonal param in all iterations
for param in pdq:
for param_seasonal in seasonal_pdq:
try:
mod = sm.tsa.statespace.SARIMAX(df,
order=param,
seasonal_order=param_seasonal,
enforce_stationarity=False,
enforce_invertibility=False)
print('...')
results = mod.fit()
lis0.append(results.aic)
lis1.append(param)
lis2.append(param_seasonal)
except:
continue
# minimum index of aic
min_aic_index = lis0.index(min(lis0))
order = lis1[min_aic_index]
seasonal_order = lis2[min_aic_index]
'''
selecting the minimun aic order for forecasting
#Fitting the ARIMA model
'''
mod = sm.tsa.statespace.SARIMAX(df,
order=order,
seasonal_order=seasonal_order,
enforce_stationarity=False,
enforce_invertibility=False)
results = mod.fit()
return results
'''
dates_to_predict = pd.date_range(start= pd.to_datetime(start_date), end= pd.to_datetime(end_date))
prediction = pd.DataFrame({'date':dates_to_predict, 'y':np.zeros(len(dates_to_predict))})
dates_to_predict.shape
prediction.dtypes
# concatinate dataframe of zero trans with transection data
merg_data = pd.concat([df.reset_index()[['date', 'y']], prediction[['date', 'y']]])
merg_data = merg_data.set_index('date')
'''
def predictions(df, model, start_date, end_date):
pred = model.get_prediction(start=pd.to_datetime(start_date),end=pd.to_datetime(end_date), dynamic=False)
pred_ci = pred.conf_int()
ax = df.plot(label='observed')
pred.predicted_mean.plot(ax=ax, label='One-step ahead Forecast', alpha=.7, figsize=(14, 7))
ax.fill_between(pred_ci.index,
pred_ci.iloc[:, 0],
pred_ci.iloc[:, 1], color='k', alpha=.2)
ax.set_xlabel('Date')
ax.set_ylabel('Sales')
plt.legend()
plt.show()
return pred.predicted_mean
train = pd.read_csv('train.csv')
train = train[["Date", "y"]]
train.columns = ["date", "y"]
train.date = pd.to_datetime(train.date)
# aggregate data on days
df = train.groupby('date')['y'].sum().reset_index()
df = df.set_index('date')
print("example date")
print("start_date = 2019-07-01 end_date = 2019-08-31 ")
start_date = '2019-07-01'
end_date = '2019-08-31'
model = train_model(train)
prediction_n_plots = predictions(df, model, start_date, end_date)