-
Notifications
You must be signed in to change notification settings - Fork 5
/
combine_BISCUT_results.py
898 lines (826 loc) · 48.5 KB
/
combine_BISCUT_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
### Author: Juliann Shih, jshih@broadinstitute.org
### Contact: Rameen Beroukhim, rameen_beroukhim@dfci.harvard.edu
### Date last updated: July 24, 2023
### License: GNU GPL2, Copyright (C) 2023 Dana-Farber Cancer Institute
### Dependencies: tested using R 4.1 and Python 3.9
### See README for guide on how to run this package
import pandas as pd
import numpy as np
import os
from operator import itemgetter
import re
import itertools
import fnmatch
darkred = '#a50f15'
lightred = '#fcae91'
lightblue = '#6baed6'
darkblue = '#08519c'
# returns the overlap
def overlap_helper(a, b):
return [max(a[0], b[0]), min(a[1], b[1])] if min(a[1], b[1]) - max(a[0], b[0]) + 1 > 0 else False
def overlap_helper_simple(a, b):
return True if min(a[1], b[1]) - max(a[0], b[0]) + 1 > 0 else False
def make_table_results(folder, kspvals, qval_thres):
ci = folder.split('_')[-1]
kspvalsdf = pd.read_csv(kspvals,sep='\t',index_col='combo')
alldfs = []
#for tt in [i for i in os.listdir(folder) if not i.startswith('.') and not i.endswith('.txt') and not i.endswith('.py') and not i.endswith('.pdf') and not i=='stats']:
for tt in next(os.walk(folder))[1]:
# for tt in ['PANCAN']:
if not os.path.exists(os.path.join(folder,tt,'summary')): os.mkdir(os.path.join(folder,tt,'summary'))
li = []
r = re.compile('iter\d.txt')
#x = [i for i in os.listdir(folder+'/'+tt) if i.endswith('.txt') and not i.endswith('BISCUT_results.txt')
# and not i.endswith('plotpeaks.txt')]
x = list(filter(r.search,os.listdir(folder+'/'+tt))) #steph edit
if len(x)>0:
for f in x: #all files
#print f
forindex = '_'.join(f.split('_')[:5]+[f.split('_')[-1][4]])
df = pd.read_csv(folder+'/'+tt+'/'+f,sep='\t')
df= df.rename(columns={'ks':'ksp','log10_ks':'log10_ksp'})
df['ksby'] = kspvalsdf.loc[forindex,'by']
df['log10_ksby'] = -np.log10(df['ksby'])
df = df.replace(to_replace={'log10_ksby':{np.inf:16}})
df['combined_sig'] = df['ks_stat'] * df['log10_ksby']
df['code'] = forindex.split('_')[4]
#this is for pruning
code_parts = forindex.split('_')[4].split('-')
iter = int(forindex.split('_')[5])
if iter>1:
all_previous= []
all_previous_files =[]
for j in range(1,iter): #for iter==5, go from 1 to 4
previous_code = '-'.join(code_parts[:j])
previous_iter = str(j)
previous_index = '_'.join(forindex.split('_')[:4])+'_'+previous_code+'_'+previous_iter
previous_file = '_'.join(forindex.split('_')[:4])+'_'+previous_code+'_'+ci+'_iter'+previous_iter+'.txt'
all_previous.append(previous_index)
all_previous_files.append(previous_file)
#print forindex, previous_index
#print all_previous
if any([kspvalsdf.loc[previous_index,'by'] > qval_thres for previous_index in all_previous]) \
or any([d.empty for d in [pd.read_csv(folder+'/'+tt+'/'+e) for e in all_previous_files]]):
#print forindex
df['ksby'] = 1
kspvalsdf.at[forindex,'by'] = 1 #steph edit
#END pruning
df = df[df['ksby']<=qval_thres] #empty df if not significant.
# #Pruning part 2
# if df.empty and iter ==1: #either because not significant or because peak was too big
# print forindex
# all_downstream_codes = [c for c in kspvals.index if c.startswith('_'.join(forindex.split('_')[:-1])) and c!=forindex]
# kspvalsdf.set_value(all_downstream_codes,'by',1)
# #end pruning part 2
li.append(df)
df.to_csv(folder+'/'+tt+'/'+f,sep='\t',index=False)
bigone = pd.concat(li)
bigone.to_csv(folder+'/'+tt+'/summary/'+tt+'_BISCUT_results.txt',sep='\t',index=False)
rnk = bigone.filter(['Gene','combined_sig'])
aprnk = bigone[(bigone['direction']=='amp')&(bigone['negpos']=='p')].filter(['Gene','combined_sig'])
dprnk = bigone[(bigone['direction']=='del')&(bigone['negpos']=='p')].filter(['Gene','combined_sig'])
anrnk = bigone[(bigone['direction']=='amp')&(bigone['negpos']=='n')].filter(['Gene','combined_sig'])
dnrnk = bigone[(bigone['direction']=='del')&(bigone['negpos']=='n')].filter(['Gene','combined_sig'])
tsrnk = pd.concat([dprnk,anrnk])
oncrnk = pd.concat([dnrnk,aprnk])
names = [folder+'/'+tt+'/summary/'+tt+'_BISCUT_results'+x+'.rnk' for x in ['','_ts-like','_onc-like','_amp-p','_del-p','_amp-n','_del-n']]
for rn,n in zip([rnk,tsrnk,oncrnk,aprnk,dprnk,anrnk,dnrnk],names):
rnz = rn.sort_values(by = 'combined_sig',ascending=False) #steph edit
rnz = rnz.drop_duplicates('Gene')
rnz.to_csv(n,sep='\t',index=False)
#rnz.to_csv('
alldfs.append(bigone)
combined = pd.concat(alldfs)
combined.to_csv(folder+'/all_BISCUT_results.txt',sep='\t',index=False)
kspvalsdf.to_csv(kspvals, sep='\t')
def calc_overlaps(folder, genelocs_file):
genelocs = pd.read_csv(genelocs_file,sep='\t')
df = pd.read_csv(folder+'/all_BISCUT_results.txt', sep='\t')
armgroups = df.groupby('arm')
#typegroups = df.groupby('type')
s_list = []
# for tt, ttdf in typegroups:
# armgroups = ttdf.groupby('arm')
for arm, armdf in armgroups: # specific arm within specific tumor type
# if arm == '1p':
armdf = armdf.drop_duplicates(['type','Peak.Start', 'Peak.End', 'direction', 'telcent', 'negpos', 'code'])
#print armdf
for dir, telcent, negpos in itertools.product(['amp', 'del'], ['tel', 'cent'], ['n', 'p']):
# within is everything that shares same path
within = armdf[(armdf.direction == dir) & (armdf.telcent == telcent) & (armdf.negpos == negpos)]
without = armdf[(armdf.direction != dir) | (armdf.telcent != telcent) | (armdf.negpos != negpos)]
within = within.filter(
['Chr', 'arm', 'type', 'Peak.Start', 'Peak.End', 'direction', 'telcent', 'negpos', 'iter', 'code',
'ksby', 'combined_sig'])
without = without.filter(
['Chr', 'arm', 'type', 'Peak.Start', 'Peak.End', 'direction', 'telcent', 'negpos', 'iter', 'code',
'ksby', 'combined_sig'])
#print dir, telcent, negpos
#print len(within)
#print len(without)
if not within.empty:
for i in within.index:
type1 = within.loc[i,'type']
#print type1
difftypewithin = within[within['type']!=type1]
newwithout = pd.concat([without,difftypewithin], ignore_index=True)
#print 'within',within
#print 'difftypewithin',difftypewithin
#print 'without',newwithout
for j in newwithout.index:
overlap = overlap_helper([within.loc[i, 'Peak.Start'], within.loc[i, 'Peak.End']],
[newwithout.loc[j, 'Peak.Start'], newwithout.loc[j, 'Peak.End']])
if overlap != False:
# print within.loc[i], without.loc[j], overlap
irow = within.loc[i]
jrow = newwithout.loc[j]
#print overlap
chrgenelocs = genelocs[genelocs['Chr'] == irow.Chr]
peakgenelocs = chrgenelocs[chrgenelocs.Start <= overlap[1]]
peakgenelocs = peakgenelocs[peakgenelocs.End >= overlap[0]]
peakgenelocs = peakgenelocs.sort_values('Start') #steph edit
genes = peakgenelocs['Gene'].tolist()
consistent = True if (irow.direction == jrow.direction and irow.negpos == jrow.negpos) or (irow.direction != jrow.direction and irow.negpos != jrow.negpos) else False
s = pd.Series(
{'Chr': irow.Chr, 'arm': arm, 'Overlap.Start': overlap[0],
'Overlap.End': overlap[1], 'type1': irow.type, 'start1': irow['Peak.Start'], 'end1': irow['Peak.End'], 'direction1': irow.direction, 'telcent1': irow.telcent,
'negpos1': irow.negpos, 'iter1': irow.iter, 'code1': irow.code, 'ksby1': irow.ksby,
'combined_sig1': irow.combined_sig, 'type2': jrow.type, 'direction2': jrow.direction,
'telcent2': jrow.telcent, 'start2': jrow['Peak.Start'], 'end2': jrow['Peak.End'],
'negpos2': jrow.negpos, 'iter2': jrow.iter, 'code2': jrow.code, 'ksby2': jrow.ksby,
'combined_sig2': jrow.combined_sig,
'combined_sig_sum': irow.combined_sig + jrow.combined_sig, 'genes': genes, 'consistent': consistent})
#print s
s_list.append(s)
dfdf0 = pd.DataFrame(s_list)
dfdf = dfdf0.drop_duplicates(['Overlap.Start', 'Overlap.End', 'arm', 'combined_sig_sum'])
dfdf = dfdf.sort_values('combined_sig_sum',ascending=False) #steph edit
cols = ['Chr','arm','Overlap.Start','Overlap.End'] + [i+'1' for i in ['type','start','end','direction','telcent','negpos','iter','code','ksby','combined_sig']] + \
[i + '2' for i in ['type','start','end','direction', 'telcent', 'negpos', 'iter', 'code', 'ksby', 'combined_sig']] + ['combined_sig_sum','genes','consistent']
dfdf = dfdf[cols]
#print dfdf
dfdf.to_csv(folder+'/BISCUT_overlaps_011320.txt', sep='\t', index=False)
dfdf[dfdf['consistent']==True].to_csv(folder+'/BISCUT_overlaps_consistent_only_210319.txt',sep='\t',index=False)
return dfdf
def overlap_significance(folder, overlapsdf, abslocs_file, num_perms = 1000):
info = pd.read_csv(abslocs_file, sep='\t',index_col='chromosome_info').transpose().to_dict()
def coords(arm):
if arm in ['13', '14', '15', '21', '22']:
coord = (info[int(arm)]['q_start'], info[int(arm)]['q_end'])
elif arm.endswith('q'):
coord = (info[int(arm[:-1])]['q_start'], info[int(arm[:-1])]['q_end'])
elif arm.endswith('p'):
coord = (info[int(arm[:-1])]['p_start'], info[int(arm[:-1])]['p_end'])
else:
coord = (
info[int(arm)]['p_start'], info[int(arm)]['p_end'], info[int(arm)]['q_start'], info[int(arm)]['q_end'])
return coord
def make_permutations(results):
try:
newdf = pd.DataFrame(index=results.index)
for id in results.index:
# print id
peak_len = results.loc[[id], 'peak_length'].iloc[0]
type = id[0]
dir = id[1]
telcent = id[2]
code = id[3]
len_code = len(code.split('-'))
results['r_dep'] = results['code'].map(lambda x: all(['r' in i for i in x.split('-')[len_code:]]))
results['l_dep'] = results['code'].map(lambda x: all(['l' in i for i in x.split('-')[len_code:]]))
#print results
tempresults = results[(results.code.str.startswith(code)) & (results.code != code)]
tempresults = tempresults[tempresults['direction'] == dir]
tempresults = tempresults[tempresults['telcent'] == telcent]
r_dep = sum(tempresults[tempresults.r_dep].peak_length)
l_dep = sum(tempresults[tempresults.l_dep].peak_length)
#print 'r_dep', r_dep
#print 'l_dep', l_dep
if results.loc[[id], 'iter'].iloc[0] == 1: # first iter
if (arm.endswith('p') and telcent == 'tel') or (not arm.endswith('p') and telcent == 'cent'): # normal
rand_start = np.random.randint(arm_start + l_dep, arm_end - r_dep - peak_len)
newdf.set_value(id, 'start', rand_start)
newdf.set_value(id, 'end', rand_start + peak_len)
newdf.set_value(id, 'r_interval_start', rand_start + peak_len + 1)
newdf.set_value(id, 'r_interval_end', arm_end)
newdf.set_value(id, 'l_interval_start', arm_start)
newdf.set_value(id, 'l_interval_end', rand_start - 1)
else: # q
rand_start = np.random.randint(arm_start + r_dep, arm_end - l_dep - peak_len)
newdf.set_value(id, 'start', rand_start)
newdf.set_value(id, 'end', rand_start + peak_len)
newdf.set_value(id, 'l_interval_start', rand_start + peak_len + 1)
newdf.set_value(id, 'l_interval_end', arm_end)
newdf.set_value(id, 'r_interval_start', arm_start)
newdf.set_value(id, 'r_interval_end', rand_start - 1)
# WORK ON THIS
else: # more than first iter
prev_id = (type, dir, telcent, '-'.join(code.split('-')[:-1]))
new_direction = code[-2]
lstart = newdf.loc[[prev_id], 'l_interval_start'].iloc[0]
lend = newdf.loc[[prev_id], 'l_interval_end'].iloc[0]
rstart = newdf.loc[[prev_id], 'r_interval_start'].iloc[0]
rend = newdf.loc[[prev_id], 'r_interval_end'].iloc[0]
if (arm.endswith('p') and telcent == 'tel') or (
not arm.endswith('p') and telcent == 'cent'): # normal direction
if new_direction == 'l':
# pass
rand_end = np.random.randint(lstart + l_dep + peak_len, lend)
newdf.set_value(id, 'end', rand_end)
newdf.set_value(id, 'start', rand_end - peak_len)
newdf.set_value(id, 'r_interval_start', rand_end + 1)
newdf.set_value(id, 'r_interval_end', rend)
newdf.set_value(id, 'l_interval_end', rand_end - peak_len - 1)
newdf.set_value(id, 'l_interval_start', lstart)
else: # if new_direction is r
rand_start = np.random.randint(rstart, rend - peak_len - r_dep)
newdf.set_value(id, 'start', rand_start)
newdf.set_value(id, 'end', rand_start + peak_len)
newdf.set_value(id, 'r_interval_start', rand_start + peak_len + 1)
newdf.set_value(id, 'r_interval_end', rend)
newdf.set_value(id, 'l_interval_start', lstart)
newdf.set_value(id, 'l_interval_end', rand_start - 1)
else: # opposite direction
if new_direction == 'r':
rand_end = np.random.randint(rstart + r_dep + peak_len, rend)
newdf.set_value(id, 'end', rand_end)
newdf.set_value(id, 'start', rand_end - peak_len)
newdf.set_value(id, 'r_interval_start', rstart)
newdf.set_value(id, 'r_interval_end', rand_end - peak_len - 1)
newdf.set_value(id, 'l_interval_start', rand_end + 1)
newdf.set_value(id, 'l_interval_end', lend)
else: # if new direction is l
rand_start = np.random.randint(lstart, lend - peak_len - l_dep)
newdf.set_value(id, 'start', rand_start)
newdf.set_value(id, 'end', rand_start + peak_len)
newdf.set_value(id, 'l_interval_start', rand_start + peak_len + 1)
newdf.set_value(id, 'l_interval_end', lend)
newdf.set_value(id, 'r_interval_start', rstart)
newdf.set_value(id, 'r_interval_end', rand_start - 1)
return newdf # return a df with a permuted set of peaks
except:
pass
#groups = overlapsdf.groupby('arm')
all_results = pd.read_csv(folder+'/all_BISCUT_results.txt', sep='\t')
# permute each type + arm separately and concat them for the comparisons
fullcombolist = []
for i in overlapsdf.index:
fullcombolist.append((overlapsdf.loc[i,'arm'],overlapsdf.loc[i,'type1']))
fullcombolist.append((overlapsdf.loc[i,'arm'],overlapsdf.loc[i,'type2']))
fullcomboset = set(fullcombolist) #len is 418; this is each individual combo that shows up in the overlaps
fullcombodic = {}
for arm, type in fullcomboset:
results = all_results[all_results.arm == arm]
results = results[results.type == type]
results = results.drop_duplicates(['Peak.Start', 'Peak.End', 'code'])
results['peak_id'] = zip(results.type, results.direction, results.telcent, results.code)
results = results.set_index('peak_id')
results['peak_length'] = results['Peak.End'] - results['Peak.Start']
results = results.sort_values(['type','iter'])
#print results
arm_start, arm_end = coords(arm)
iteration_dfs = []
while len(iteration_dfs) < num_perms:
n = len(iteration_dfs) + 1
newdf = make_permutations(results)
if newdf is not None:
newdf['perm'] = n
iteration_dfs.append(newdf)
permdf = pd.concat(iteration_dfs)
#print permdf
fullcombodic[(arm,type)] = permdf
#print fullcombodic
for i in overlapsdf.index:
arm = overlapsdf.loc[i, 'arm']
type1 = overlapsdf.loc[i, 'type1']
type2 = overlapsdf.loc[i, 'type2']
peak1 = (type1, overlapsdf.loc[i, 'direction1'], overlapsdf.loc[i, 'telcent1'], overlapsdf.loc[i, 'code1'])
peak2 = (type2, overlapsdf.loc[i, 'direction2'], overlapsdf.loc[i, 'telcent2'], overlapsdf.loc[i, 'code2'])
# if type1==type2: #within same tumor type
# comparison_df = fullcombodic[(arm,type1)]
# else:
# comparison_df = pd.concat([fullcombodic[(arm,type1)], fullcombodic[(arm,type2)]])
df1 = fullcombodic[(arm,type1)].loc[[peak1]].set_index('perm')
df1['coords1'] = zip(df1.start, df1.end)
df2 = fullcombodic[(arm,type2)].loc[[peak2]].set_index('perm')
df2['coords2'] = zip(df2.start, df2.end)
df1['coords2'] = df2['coords2']
zz = df1.index.map(lambda x: overlap_helper_simple(df1.loc[x, 'coords1'], df1.loc[x, 'coords2']))
#print len(zz[zz])
overlapsdf.set_value(i, 'perm_sig', len(zz[zz]) / float(num_perms))
#print overlapsdf
# finaldf = pd.concat(recombine)
# finaldf = finaldf.sort('combined_sig_sum', ascending=False)
# finaldf.to_csv('something_011420.txt', sep='\t', index=False)
overlapsdf.to_csv(results+'/BISCUT_overlaps_with_permuted_sig_210319.txt', sep='\t', index=False)
overlapsdf[overlapsdf['consistent'] == True].to_csv(folder + '/BISCUT_overlaps_with_permuted_sig_consistent_only_210319.txt', sep='\t',
index=False)
return overlapsdf
def make_column_results(folder, qval_thres):
if not os.path.exists(os.path.join(folder,'all_cols')): os.mkdir(os.path.join(folder,'all_cols'))
list_of_cols = []
#for tt in [i for i in os.listdir(folder) if not i.startswith('.') and not i.endswith('.txt') and not i.endswith('.py') and not i.endswith('pdf')]:
for tt in next(os.walk(folder))[1]:
if not os.path.exists(os.path.join(folder,tt,'summary')): os.mkdir(os.path.join(folder,tt,'summary'))
r = re.compile('iter\d.txt')
#x = [i for i in os.listdir(folder+'/'+tt) if i.endswith('.txt') and not i.endswith('BISCUT_results.txt') and not i.endswith('0.9.txt') and not i.endswith('plotpeaks.txt')]
x = list(filter(r.search,os.listdir(folder+'/'+tt)))
if len(x)>0:
li = []
for f in x:
#print f
df = pd.read_csv(folder+'/'+tt+'/'+f,sep='\t')
df = df.replace(to_replace={'log10_ksby': {np.inf: 16}})
if df.empty:
continue
if df.loc[0,'ksby'] >qval_thres:
continue
cyto =df.Cytoband.value_counts().index[0]
peakband = str(df.loc[0,'Chr']) + cyto
# peakband = 'void'
peakloc = 'chr'+str(df.loc[0,'Chr'])+':'+str(df.loc[0,'Peak.Start'])+'-'+str(df.loc[0,'Peak.End'])
negpos = df.loc[0,'negpos']
direction = df.loc[0,'direction']
telcent = df.loc[0,'telcent']
n_events = df.loc[0,'n_events']
genes =df['Gene'].tolist()
log10ksby = df.loc[0,'log10_ksby']
sig = df.loc[0,'ks_stat']
combinedsig = df.loc[0,'log10_ksby'] * df.loc[0,'ks_stat']
code = df.loc[0,'code']
if (direction=='del' and negpos == 'p'):
supposed = 'TS-like'
elif (direction=='del' and negpos == 'n'):
supposed = 'essential-like'
elif (direction=='amp' and negpos == 'n'):
supposed = 'toxic-like'
elif (direction=='amp' and negpos == 'p'):
supposed='onco-like'
thelist = [peakband, peakloc, combinedsig, log10ksby, sig, n_events, direction, telcent,negpos, code,supposed] +genes
li.append(thelist)
li = sorted(li, key=itemgetter(2),reverse=True)
#print li
if len(li)==0:
continue
maxlen = max([len(x) for x in li])
newdf = pd.DataFrame(index=range(0,maxlen))
for k in range(0,len(li)):
newdf[k] = li[k] + ([np.nan]*(maxlen-len(li[k])))
#print newdf
#print maxlen
leftheaders = ['cytoband','peak_location','combined_sig','log10_ksby','ks_stat','n_events','direction','telomeric or centromeric','selection','code','TS or onco-like','genes']
newdf.insert(0,'stuff',leftheaders + ([np.nan]*(maxlen-len(leftheaders))))
newdf.to_csv(folder+'/'+tt+'/summary/'+tt+'_BISCUT_results_cols_'+folder.split('_')[-1]+'.txt',sep='\t',index=False,header=False)
newdf.to_csv(folder+'/all_cols/'+tt+'_BISCUT_results_cols_'+folder.split('_')[-1]+'.txt',sep='\t',index=False,header=False)
list_of_cols.append((tt,newdf))
return list_of_cols
def process_for_ggplot(results, qval_thres, abslocs_file):
locs = pd.read_csv(abslocs_file,sep='\t',index_col='chromosome_info')
for tt in [i for i in os.listdir(results) if os.path.isdir(os.path.join(results,i)) and i not in ('all_cols','genes','arms')]:
try:
#print tt
df = pd.read_csv(results+'/'+tt+'/summary/'+tt+'_BISCUT_results.txt',sep='\t')
df['peak_id'] = zip(df.arm, df.direction, df.telcent,
df.code)
if tt=='PANCAN':
sizes = df.groupby('peak_id').size()
sizes = sizes[sizes <= 50]
df = df[df['peak_id'].isin(sizes.index)]
df = df.replace(to_replace={'log10_ksby':{np.inf:16}})
df = df.drop_duplicates(subset=['log10_ksby','Peak.Start','Peak.End','arm','direction','telcent','negpos'])
df = df[df['ksby']<=qval_thres]
df['log10_ksby']=df.apply(lambda x: -1*x['log10_ksby'] if x['direction']=='del' else x['log10_ksby'],axis=1)
df['combined_sig'] = df['log10_ksby'] * df['ks_stat']
# for each peak, make a thing [xmin, xmax, ymin, ymax] [0,10,0,20]
df['pq'] = df['Cytoband'].str[:1]
# df['pq'] = 'void'
#amps
#for tc in ['tel','cent']:
try:
df_amp = df[df['direction']=='amp']
#df_amp = df_amp[df_amp['telcent']==tc]
coords = []
for i in df_amp.index:
xmin = df_amp.loc[i,'Peak.Start'] + locs.loc[int(df_amp.loc[i,'Chr']),'offset']
xmax = df_amp.loc[i,'Peak.End'] + locs.loc[int(df_amp.loc[i,'Chr']),'offset']
ymin = min([0,df_amp.loc[i,'combined_sig']])
ymax = max([0,df_amp.loc[i,'combined_sig']])
if min([ymin,ymax]) < 0: color =lightblue
if max([ymin, ymax]) > 0: color = darkred
#print [xmin,xmax,ymin,ymax,color]
coords.append([xmin,xmax,ymin,ymax,color])
#if genefilter == 10000:
pd.DataFrame(coords).to_csv(results+'/'+tt+'/summary/'+tt+'_BISCUT_results_for_plotting_amp.txt',sep='\t',index=False,header=False)
except:
pass
try:
df_del = df[df['direction']=='del']
coords = []
for i in df_del.index:
xmin = df_del.loc[i,'Peak.Start']+ locs.loc[int(df_del.loc[i,'Chr']),'offset']
xmax = df_del.loc[i,'Peak.End']+ locs.loc[int(df_del.loc[i,'Chr']),'offset']
ymin = min([0,df_del.loc[i,'combined_sig']])
ymax = max([0,df_del.loc[i,'combined_sig']])
if min([ymin,ymax]) < 0: color =lightred
if max([ymin,ymax]) > 0: color =darkblue
#print [xmin,xmax,ymin,ymax,color]
coords.append([xmin,xmax,ymin,ymax,color])
#if genefilter == 10000:
pd.DataFrame(coords).to_csv(results+'/'+tt+'/summary/'+tt+'_BISCUT_results_for_plotting_del.txt',sep='\t',index=False,header=False)
except:
pass
try:
df_pos = df[df['negpos'] == 'p']
coords = []
for i in df_pos.index:
xmin = df_pos.loc[i, 'Peak.Start'] + locs.loc[int(df_pos.loc[i, 'Chr']), 'offset']
xmax = df_pos.loc[i, 'Peak.End'] + locs.loc[int(df_pos.loc[i, 'Chr']), 'offset']
ymin = min([0, df_pos.loc[i, 'combined_sig']])
ymax = max([0, df_pos.loc[i, 'combined_sig']])
if min([ymin, ymax]) < 0: color = darkblue
if max([ymin, ymax]) > 0: color = darkred
# print [xmin,xmax,ymin,ymax,color]
coords.append([xmin, xmax, ymin, ymax, color])
# if genefilter == 10000:
pd.DataFrame(coords).to_csv(
results + '/' + tt + '/summary/' + tt + '_BISCUT_results_for_plotting_pos.txt',
sep='\t', index=False, header=False)
except:
pass
try:
df_neg = df[df['negpos'] == 'n']
# df_del = df_del[df_del['telcent']==tc]
coords = []
for i in df_neg.index:
xmin = df_neg.loc[i, 'Peak.Start'] + locs.loc[int(df_neg.loc[i, 'Chr']), 'offset']
xmax = df_neg.loc[i, 'Peak.End'] + locs.loc[int(df_neg.loc[i, 'Chr']), 'offset']
ymin = min([0, df_neg.loc[i, 'combined_sig']])
ymax = max([0, df_neg.loc[i, 'combined_sig']])
if min([ymin, ymax]) < 0: color = lightred
if max([ymin, ymax]) > 0: color = lightblue
# print [xmin,xmax,ymin,ymax,color]
coords.append([xmin, xmax, ymin, ymax, color])
# if genefilter == 10000:
pd.DataFrame(coords).to_csv(
results + '/' + tt + '/summary/' + tt + '_BISCUT_results_for_plotting_neg.txt',
sep='\t', index=False, header=False)
except:
pass
except:
pass
def process_for_ggplot_jagged(results, qval_thres, abslocs_file):
locs = pd.read_csv(abslocs_file, sep='\t',index_col='chromosome_info')
#for tt in ['PANCAN']:
for tt in [i for i in next(os.walk(results))[1] if i not in ['stats','all_cols','arms','genes']]:
#print tt
try:
df = pd.read_csv(results + '/' + tt + '/summary/' + tt + '_BISCUT_results.txt', sep='\t')
df['peak_id'] = zip(df.arm, df.direction, df.telcent,
df.code)
sizes = df.groupby('peak_id').size()
sizes = sizes[sizes <= 50]
df = df[df['peak_id'].isin(sizes.index)]
df = df.replace(to_replace={'log10_ksby': {np.inf: 16}})
df = df.drop_duplicates(subset=['log10_ksby', 'Peak.Start', 'Peak.End', 'arm', 'direction','telcent', 'negpos'])
df = df[df['ksby'] <= qval_thres]
tempfullname = list(set(df['type'].str.cat([df.arm.astype(str),df.direction,df.telcent,df.code,df.conf.astype(str),'iter'+df.iter.astype(int).astype(str),'|'+df.log10_ksby.astype(str)],sep='_')))
#print tempfullname
fullname = {}
for fn in tempfullname:
fullname[fn.split('_|')[0]]=float(fn.split('_|')[1])
#print fullname
# for each peak, make a thing [xmin, xmax, ymin, ymax] [0,10,0,20]
df['pq'] = df['Cytoband'].str[:1]
# df['pq'] = 'void'
ampfilltel = []
delfilltel = []
ampfillcent = []
delfillcent = []
for fa in fullname:
arm = fa.split('_')[1]
direc = fa.split('_')[2]
telcent = fa.split('_')[3]
prefix = fa.split('_')[4]
#print fa
pp = pd.read_csv(results+'/'+tt+'/'+fa+'plotpeaks.txt',sep='\t')
if arm.endswith('q') or arm in ['13','14','15','21','22']:
pp['locx'] = sorted(pp['locx'],reverse=True)
pp = pp.drop_duplicates(subset=['locx','distancey'])
pp['distancey'] = pp['distancey']*fullname[fa]
if arm in ['13','14','15','21','22']:
pp['locx'] = pp['locx'] + locs.loc[int(arm),'offset']
else:
pp['locx'] = pp['locx'] + locs.loc[int(arm[:-1]), 'offset']
#if fa == 'PANCAN_5q_del_cent_p_0.95_iter1': print pp
pp = pp.drop('fraclocx', axis=1)
pp = pp.reset_index(drop=True)
pp = pp.join(pp.loc[1:].reset_index(drop=True), rsuffix='r')[:-1]
#if fa == 'PANCAN_5q_del_cent_p_0.95_iter1': print pp
if direc=='amp':
if prefix[-1]=='p':
pp['color'] = darkred
else:
pp['color'] = lightblue
if telcent =='tel':
ampfilltel.append(pp)
else:
ampfillcent.append(pp)
else:
if prefix[-1] =='p':
pp['color'] = darkblue
else:
pp['color'] = lightred
if telcent =='tel':
delfilltel.append(pp)
else:
delfillcent.append(pp)
#print 'printing' + tt
#if genefilter==10000:
try:
pd.concat(ampfilltel).to_csv(results + '/' + tt + '/summary/' + tt + '_BISCUT_results_for_jagged_plotting_amp_tel.txt',
sep='\t', index=False, header=False)
except:
pass
try:
pd.concat(ampfillcent).to_csv(results + '/' + tt + '/summary/' + tt + '_BISCUT_results_for_jagged_plotting_amp_cent.txt',
sep='\t', index=False, header=False)
except:
pass
try:
pd.concat(delfilltel).to_csv(results + '/' + tt + '/summary/' + tt + '_BISCUT_results_for_jagged_plotting_del_tel.txt',
sep='\t', index=False, header=False)
except:
pass
try:
pd.concat(delfillcent).to_csv(results + '/' + tt + '/summary/' + tt + '_BISCUT_results_for_jagged_plotting_del_cent.txt',
sep='\t', index=False, header=False)
except:
pass
except:
pass
centdfs = [i for i in os.listdir(os.path.join(results,tt,'summary')) if fnmatch.fnmatch(i, '*_for_jagged_plotting_*_cent.txt')]
teldfs = [i for i in os.listdir(os.path.join(results,tt,'summary')) if fnmatch.fnmatch(i, '*_for_jagged_plotting_*_tel.txt')]
togetherdfs = centdfs+teldfs
#print centdfs
#print teldfs
alltogether = []
if len(centdfs) !=0:
try:
centdf = pd.concat([pd.read_csv(os.path.join(results,tt,'summary',i),sep='\t',header=None) for i in centdfs if os.stat(os.path.join(results,tt,'summary',i)).st_size!=0 ] )
alltogether.append(('cent',centdf))
except: pass
if len(teldfs) !=0:
try:
teldf = pd.concat([pd.read_csv(os.path.join(results,tt,'summary',i),sep='\t',header=None) for i in teldfs if os.stat(os.path.join(results,tt,'summary',i)).st_size!=0 ] )
alltogether.append(('tel',teldf))
except: pass
if len(togetherdfs) != 0:
try:
togetherdf = pd.concat([pd.read_csv(os.path.join(results,tt,'summary',i),sep='\t',header=None) for i in togetherdfs if os.stat(os.path.join(results,tt,'summary',i)).st_size!=0 ] )
alltogether.append(('telcent',togetherdf))
except:pass
#print alltogether
if len(alltogether)>0:
for tc, df in alltogether:
tempdf = df
tempdf['abssmall'] = [min(i) for i in zip(tempdf[1].abs(),tempdf[3].abs())]
tempdf['absbig'] = [max(i) for i in zip(tempdf[1].abs(),tempdf[3].abs())]
tempdf = tempdf.reset_index(drop=True)
#print tempdf
for i in tempdf.index:
#print i
#print df.loc[i,4]
if tempdf.loc[i,4] == lightred or tempdf.loc[i,4]==darkred: #on the right side, onco-gene liike
tempdf.set_value(i,1,tempdf.loc[i,'abssmall'])
tempdf.set_value(i,3,tempdf.loc[i,'absbig'])
else:
tempdf.set_value(i,1,-tempdf.loc[i,'absbig'])
tempdf.set_value(i,3,-tempdf.loc[i,'abssmall'])
tempdf = tempdf.filter(items=[0,1,2,3,4])
#print tempdf
posdf = tempdf[tempdf[4].isin([darkblue,darkred])]
negdf = tempdf[tempdf[4].isin([lightblue,lightred])]
#print posdf
#print negdf
# posdf.to_csv(results+'/'+tt+'/summary/'+tt+'_BISCUT_results_for_jagged_plotting_pos_'+tc+'.txt',sep='\t',index=False,header=False)
# negdf.to_csv(results+'/'+tt+'/summary/'+tt+'_BISCUT_results_for_jagged_plotting_neg_'+tc+'.txt',sep='\t',index=False,header=False)
# pd.concat([posdf,negdf]).to_csv(results+'/'+tt+'/summary/'+tt+'_BISCUT_results_for_jagged_plotting_posneg_'+tc+'.txt',sep='\t',index=False,header=False)
#if genefilter == 10000:
posdf.to_csv(
results + '/' + tt + '/summary/' + tt + '_BISCUT_results_for_jagged_plotting_pos_' + tc + '.txt',
sep='\t', index=False, header=False)
negdf.to_csv(
results + '/' + tt + '/summary/' + tt + '_BISCUT_results_for_jagged_plotting_neg_' + tc + '.txt',
sep='\t', index=False, header=False)
pd.concat([posdf, negdf]).to_csv(
results + '/' + tt + '/summary/' + tt + '_BISCUT_results_for_jagged_plotting_posneg_' + tc + '.txt',
sep='\t', index=False, header=False)
def make_all_peaks(results, qval_thres):
cancer = pd.read_csv('cancer_genes_030718.txt', sep='\t', index_col='Unnamed: 0')
for tt in os.listdir(results):
try:
BISCUT = pd.read_csv(results + '/' + tt + '/' + tt + '_BISCUT_results.txt', sep='\t')
BISCUT = BISCUT[BISCUT['ksby'] <= qval_thres]
BISCUT['log10_ksby'] = BISCUT['log10_ksby'].replace({np.inf: 16})
groups = BISCUT.groupby(['arm', 'direction', 'code'])
allgenes = []
allcancergenes = []
dicfordf = {}
for combo, df in groups:
direction = df['direction'].tolist()[0]
negpos = df['negpos'].tolist()[0]
stopgo = 'STOP' if (direction == 'del' and negpos == 'p') or (direction == 'amp' and negpos == 'n') else 'GO'
if direction == 'amp' and negpos == 'n':
color = lightblue
elif direction == 'del' and negpos == 'p':
color = darkblue
elif direction == 'del' and negpos == 'n':
color = lightred
elif direction == 'amp' and negpos == 'p':
color = darkred
cyto = df.Cytoband.value_counts().index[0]
# cyto = 'void'
genes = df['Gene'].tolist()
peakloc = 'chr' + str(df['Chr'].tolist()[0]) + ':' + str(df['Peak.Start'].tolist()[0]) + '-' + str(
df['Peak.End'].tolist()[0])
if genes[0].startswith('['):
genes = [genes[0][1:-1]]
minicancer = cancer[cancer.index.isin(genes)]
minicancergenes = minicancer.index.tolist()
miniscores = [minicancer.loc[i, 'Total_Score'] for i in minicancergenes]
dicfordf['_'.join(combo)] = {'n_total_genes': len(genes), 'n_driver_genes': len(minicancer.index.tolist()),
'driver_genes': ', '.join(minicancergenes),
'driver_score': sum(minicancer['Total_Score'] / len(genes)),
'log10_ksby': df['log10_ksby'].tolist()[0], 'ks_stat': df['ks_stat'].tolist()[0],
'combined_sig': df['log10_ksby'].tolist()[0] * df['ks_stat'].tolist()[0],
'all_genes': ', '.join(genes),
'driver_gene_points': ', '.join(
[str(minicancer.loc[i, 'Total_Score']) for i in minicancergenes]),
'STOP_or_GO': stopgo, 'direction': direction, 'negpos': negpos, 'color': color,
'max_driver_gene_points': max(miniscores) if len(miniscores) > 0 else 0,
'cytoband': cyto, 'peak_location': peakloc}
allgenes = allgenes + genes
allcancergenes = allcancergenes + minicancergenes
#print 'in peaks, duplicates', len(allgenes)
#print 'in peaks, no duplicates', len(list(set(allgenes)))
#print 'driver genes in peaks, duplicates', len(allcancergenes)
#print 'driver genes in peaks, no duplicates', len(list(set(allcancergenes)))
# print dicfordf
# print pd.DataFrame(dicfordf).transpose()
newdf = pd.DataFrame(dicfordf).transpose()
newdf =newdf[['peak_location','cytoband','STOP_or_GO','direction','negpos','color','combined_sig','log10_ksby','ks_stat',
'all_genes','n_total_genes','driver_genes','n_driver_genes','driver_gene_points','max_driver_gene_points',
'driver_score']]
newdf = newdf.sort_values('combined_sig',ascending=False)
newdf.to_csv(results + '/' + tt + '/summary/' + tt + '_BISCUT_results_all_peaks.txt', sep='\t', index_label='combo')
except:
pass
def filter_BISCUT_knowngenes(folder, genes):
df = pd.read_csv(folder+'/all_BISCUT_results.txt',sep='\t')
if not os.path.exists(os.path.join(folder,'genes')): os.mkdir(os.path.join(folder,'genes'))
if not os.path.exists(os.path.join(folder,'genes','files')): os.mkdir(os.path.join(folder,'genes','files'))
for g in genes:
try:
minidf = df[df['Gene']==g]
minidf = minidf.sort_values(by=['combined_sig','n_events'],ascending=[False,False])
minidf.to_csv(folder+'/genes/files/'+g+'_BISCUT_results.txt',sep='\t',index=False)
minidf = minidf.reset_index(drop=True)
def colors(x):
if x['direction']=='amp' and x['negpos']=='p':
return darkred
elif x['direction']=='del' and x['negpos']=='n':
return lightred
elif x['direction'] == 'del' and x['negpos'] == 'p':
return darkblue
else:
return lightblue
minidf['colors'] = minidf.apply(lambda x: colors(x),axis=1)
start = minidf.loc[0,'Start']
end = minidf.loc[0,'End']
truncdf = minidf.filter(items=['Peak.Start','Peak.End','n_events','type','direction','telcent','iter','code','combined_sig','colors'])
truncdf = truncdf.append(
pd.DataFrame([[start, end, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, '#000000']], columns=truncdf.columns))
truncdf = truncdf.reset_index(drop=True)
truncdf['ymax'] = (-truncdf.index)-0.1
truncdf['ymin'] = (-truncdf.index)-1
truncdf.to_csv(folder+'/genes/files/'+g+'_BISCUT_fig2.txt',sep='\t',index=False)
except:
pass
def filter_BISCUT_arms(folder, arms):
df = pd.read_csv(folder+'/all_BISCUT_results.txt',sep='\t')
if not os.path.exists(os.path.join(folder,'arms')): os.mkdir(os.path.join(folder,'arms'))
if not os.path.exists(os.path.join(folder,'arms','files')): os.mkdir(os.path.join(folder,'arms','files'))
for g in arms:
#try:
if not os.path.exists(os.path.join(folder, 'arms', 'files',g)): os.mkdir(os.path.join(folder, 'arms', 'files',g))
arm_dic = {i:{} for i in [('amp','n'),('del','n'),('amp','p'),('del','p')]}
for c in [('amp','n'),('del','n'),('amp','p'),('del','p')]:
minidf = df.drop_duplicates(subset=['arm','type','direction','telcent','negpos','code'])
minidf = minidf[minidf['arm']==g]
minidf = minidf[minidf['direction']==c[0]]
minidf = minidf[minidf['negpos']==c[1]]
minidf = minidf.sort_values(by=['combined_sig','n_events'],ascending=[False,False])
#includes multiple iterations
minidf.to_csv(folder+'/arms/files/'+g+'/'+g+'_'+c[0]+'_'+c[1]+'_multiter_BISCUT_results.txt',sep='\t',index=False)
arm_dic[c]['_multiter_BISCUT_results'] = minidf
minidf = minidf.reset_index(drop=True)
if minidf.empty:
continue
def colors(x):
if x['direction']=='amp' and x['negpos']=='p':
return darkred
elif x['direction']=='del' and x['negpos']=='n':
return lightred
elif x['direction'] == 'del' and x['negpos'] == 'p':
return darkblue
else:
return lightblue
minidf['colors'] = minidf.apply(lambda x: colors(x),axis=1)
start = minidf.loc[0,'Start']
end = minidf.loc[0,'End']
truncdf = minidf.filter(items=['Peak.Start','Peak.End','n_events','type','direction','telcent','iter','code','combined_sig','colors'])
truncdf = truncdf.reset_index(drop=True)
truncdf['ymax'] = (-truncdf.index)-0.1
truncdf['ymin'] = (-truncdf.index)-1
truncdf.to_csv(folder+'/arms/files/'+g+'/'+g+'_'+c[0]+'_'+c[1]+'_multiter_BISCUT_fig2.txt',sep='\t',index=False)
arm_dic[c]['_multiter_BISCUT_fig2'] = truncdf
truncdf = truncdf[~truncdf.code.str[:-2].str.contains(c[1])]
truncdf = truncdf.reset_index(drop=True)
truncdf['ymax'] = (-truncdf.index)-0.1
truncdf['ymin'] = (-truncdf.index)-1
truncdf.to_csv(folder+'/arms/files/'+g+'/'+g+'_'+c[0]+'_'+c[1]+'_firstiter_BISCUT_fig2.txt',sep='\t',index=False)
arm_dic[c]['_firstiter_BISCUT_fig2'] = truncdf
truncdf = truncdf[truncdf['code']==c[1]]
truncdf = truncdf.reset_index(drop=True)
truncdf['ymax'] = (-truncdf.index)-0.1
truncdf['ymin'] = (-truncdf.index)-1
truncdf.to_csv(folder+'/arms/files/'+g+'/'+g+'_'+c[0]+'_'+c[1]+'_BISCUT_fig2.txt',sep='\t',index=False)
arm_dic[c]['_BISCUT_fig2'] = truncdf
#filters out multiple iterations
minidf = minidf[~minidf.code.str[:-2].str.contains(c[1])]
minidf.to_csv(folder+'/arms/files/'+g+'/'+g+'_'+c[0]+'_'+c[1]+'_firstiter_BISCUT_results.txt',sep='\t',index=False)
arm_dic[c]['_firstiter_BISCUT_results'] = minidf
minidf = minidf[minidf['code']==c[1]]
minidf.to_csv(folder+'/arms/files/'+g+'/'+g+'_'+c[0]+'_'+c[1]+'_BISCUT_results.txt',sep='\t',index=False)
arm_dic[c]['_BISCUT_results'] = minidf
#print g
#print arm_dic
for d in ['_multiter_BISCUT_results','_multiter_BISCUT_fig2','_firstiter_BISCUT_fig2','_BISCUT_fig2','_firstiter_BISCUT_results','_BISCUT_results']:
for c in [('amp','n'),('del','n'),('amp','p'),('del','p')]:
if d not in arm_dic[c]:
arm_dic[c][d] = pd.DataFrame()
onco = pd.concat([arm_dic[('amp','p')][d], arm_dic[('del','n')][d]])
ts = pd.concat([arm_dic[('amp','n')][d], arm_dic[('del','p')][d]])
# print onco
#print ts
pre = 'onco'
for mini in [onco,ts]:
if not mini.empty:
mini = mini.sort_values(by=['combined_sig','n_events'],ascending=[False,False])
#ts = ts.sort(columns=['combined_sig','n_events'],ascending=[False,False])
mini = mini.reset_index(drop=True)
mini['ymax'] = (-mini.index)-0.1
mini['ymin'] = (-mini.index)-1
mini.to_csv(folder+'/arms/files/'+g+'/'+g+'_'+pre+d+'.txt',sep='\t',index=False)
pre = 'ts'
def extract_cols(folder, lop, arms):
if not os.path.exists(os.path.join(folder,'arms','cols')): os.mkdir(os.path.join(folder,'arms','cols'))
for a in arms:
#print a
list_of_minicols=[]
for tt, col in lop:
#print a, tt
try:
zz = col.reset_index(drop=True)
tcol = zz.transpose()
minitcol = tcol[tcol[0].str.startswith(a)]
#if minitcol.empty:
# break
#print minitcol
minitcol.insert(0,'tt',tt)
# minitcol = minitcol.reset_
#print minitcol
minicol = minitcol.transpose()
minicol=minicol.reset_index(drop=True)
list_of_minicols.append(minicol)
except: pass
# li = sorted(list_of_minicols, key=itemgetter(3),reverse=True)
df = pd.concat(list_of_minicols,axis=1)
#print df
df = df.transpose().sort_values(3,ascending=False).transpose()
# df = df.transpose()
leftheaders = ['tumor_type','cytoband','peak_location','combined_sig','log10_ksby','ks_stat','n_events','direction','telcent','selection','code','TS or onco-like','genes']
df.insert(0,'stuff',leftheaders + ([np.nan]*(df.shape[0]-len(leftheaders))))
df.to_csv(os.path.join(folder,'arms','cols',a+'_BISCUT_results_cols_'+folder.split('_')[-1]+'.txt'),sep='\t',index=False,header=False)
def all_processing(date, ci, qval_thres, genes, arms, genelocs_file, abslocs_file):
folder='results_'+date+'_'+str(ci)
kspval=folder+'/KS_pvalues_'+date+'_'+str(ci)+'.txt'
make_table_results(folder,kspval, qval_thres)
calc_overlaps(folder, genelocs_file)
lop = make_column_results(folder, qval_thres)
process_for_ggplot(folder, qval_thres, abslocs_file)
process_for_ggplot_jagged(folder, qval_thres, abslocs_file)
#make_all_peaks(folder, qval_thres)
filter_BISCUT_knowngenes(folder, genes)
filter_BISCUT_arms(folder,arms)
extract_cols(folder,lop,arms)