Skip to content

Latest commit

 

History

History
125 lines (106 loc) · 4.47 KB

README.md

File metadata and controls

125 lines (106 loc) · 4.47 KB

Semantic Scene Change Detection Network

This is a fork of an official implementation of "Correlated Siamese Change Detection Network (CSCDNet)" and "Silhouette-based Semantic Change Detection Network (SSCDNet)" in "Weakly Supervised Silhouette-based Semantic Scene Change Detection" (ICRA2020). (SSCDNet and PSCD datast are preparing...)

Changes have been incorporated for compatibility with Pytorch 1.4 and for training with multiple GPU's. The author also made changes that were merged into the Flownet2 repo for compatibility with Pytorch 1.4, so the install script for the correlation package has an updated commit hash. A module has been created as an interface for inferencing.

Environments

This code was developed and tested with Python 3.6.9 and PyTorch 1.4 and CUDA 10.2.

  • GCC
# Build and install GCC (>= 7.4.0) if not installed
# Set path variables
export PATH=/home/$USER/local/gcc/bin:$PATH  
export LD_LIBRARY_PATH=/home/$USER/local/gcc/lib64:$LD_LIBRARY_PATH  
  • Virtualenv for system setting
# Set CUDA path. 
# In case of server, the following CUDA path setting with module load command might be necessary.
module load cuda/9.2/9.2.88.1  
 
# Create a virtualenv environment
virtualenv -p python /path/to/env/pytorch1.0cuda9.2 

#Activate the virtualenv environment
source /path/to/env/pytorch1.0cuda9.2/bin/activate

# Install dependencies
pip install -r requirements.txt
  • Download the pretrained model of resnet18
sh download_resnet.sh
  • Build correlation layer package from flownet2.
sh build_correlation_package.sh

Dataset

TSUNAMI and GSV in Panoramic Change Detection dataset are available through an e-mail contact described here including the dataset used for five-fold cross validation in our paper, in which image cropping and data augumentation have been performed.

Training

pcd_5cv        
   ├── set0/                       
   │   ├── train/             # *.jpg
   │   ├── test/              # *.jpg
   │   ├── mask/              # *.png
   |   ├── train.txt
   |   ├── test.txt
   ├── set1/                       
   ...   
   ├── set2/
   ...   
   ├── set3/
   ...
   ├── set4/                       
       ├── train/             # *.jpg
       ├── test/              # *.jpg
       ├── mask/              # *.png
       ├── train.txt
       ├── test.txt   

Testing

pcd                        
   ├── TSUNAMI/                       
   │   ├── t0/                # *.jpg
   │   ├── t1/                # *.jpg
   │   ├── mask/              # *.png
   ├── GSV/                       
       ├── t0/                # *.jpg
       ├── t1/                # *.jpg
       ├── mask/              # *.png

Training

Train change detection network with correlation layers (CSCDNet)

# i-th set of five-hold cross-validation  (0 <= i < 5)
python train.py  --cvset i --use-corr --datadir /path/to/pcd_5cv --checkpointdir /path/to/log --max-iteration 50000 --num-workers 16 --batch-size 32 --icount-plot 50 --icount-save 10000

Train change detection network without correlation layers (CDNet)

# i-th set of five-hold cross-validation  (0 <= i < 5)
python train.py  --cvset i --datadir /path/to/pcd_5cv --checkpointdir /path/to/log --max-iteration 50000 --num-workers 16 --batch-size 32 --icount-plot 50 --icount-save 10000

You can start a tensorboard session

tensorboard --logdir=/path/to/log 

Testing

CSCDNet

python test.py --use-corr --dataset PCD --datadir /path/to/pcd --checkpointdir /path/to/log/cscdnet/checkpoint

CDNet

python test.py --dataset PCD --datadir /path/to/pcd --checkpointdir /path/to/log/cdnet/checkpoint

Citation

If you find this implementation useful in your work, please cite the paper. Here is a BibTeX entry:

@article{sakurada2020weakly,
  title={Weakly Supervised Silhouette-based Semantic Scene Change Detection},
  author={Sakurada, Ken and Shibuya, Mikiya and Wang Weimin},
  journal={Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)},
  year={2020}
}

The preprint can be found here.