forked from kensakurada/sscdnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcscdnet.py
257 lines (223 loc) · 10.5 KB
/
cscdnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import torch
import torch.nn as nn
import init
from collections import OrderedDict
from correlation_package.correlation import Correlation
class Model(nn.Module):
def __init__(self, inc, outc, corr=True, pretrained=True):
super(Model, self).__init__()
self.corr = corr
# encoder1
self.enc1_conv1 = nn.Conv2d(int(inc/2), 64, 7, padding=3, stride=2, bias=False)
self.enc1_bn1 = nn.BatchNorm2d(64)
self.enc1_pool1 = nn.MaxPool2d(3, stride=2, padding=1)
self.enc1_res1_1 = ResBL( 64, 64, 64, stride=1)
self.enc1_res1_2 = ResBL( 64, 64, 64, stride=1)
self.enc1_res2_1 = ResBL( 64, 128, 128, stride=2)
self.enc1_res2_2 = ResBL(128, 128, 128, stride=1)
self.enc1_res3_1 = ResBL(128, 256, 256, stride=2)
self.enc1_res3_2 = ResBL(256, 256, 256, stride=1)
self.enc1_res4_1 = ResBL(256, 512, 512, stride=2)
self.enc1_res4_2 = ResBL(512, 512, 512, stride=1)
self.enc1_conv5 = nn.Conv2d( 512, 1024, 3, padding=1, stride=2)
self.enc1_bn5 = nn.BatchNorm2d(1024)
self.enc1_conv6 = nn.Conv2d(1024, 1024, 3, padding=1, stride=1)
self.enc1_bn6 = nn.BatchNorm2d(1024)
# encoder2
self.enc2_conv1 = nn.Conv2d(int(inc/2), 64, 7, padding=3, stride=2, bias=False)
self.enc2_bn1 = nn.BatchNorm2d(64)
self.enc2_pool1 = nn.MaxPool2d(3, stride=2, padding=1)
self.enc2_res1_1 = ResBL( 64, 64, 64, stride=1)
self.enc2_res1_2 = ResBL( 64, 64, 64, stride=1)
self.enc2_res2_1 = ResBL( 64, 128, 128, stride=2)
self.enc2_res2_2 = ResBL(128, 128, 128, stride=1)
self.enc2_res3_1 = ResBL(128, 256, 256, stride=2)
self.enc2_res3_2 = ResBL(256, 256, 256, stride=1)
self.enc2_res4_1 = ResBL(256, 512, 512, stride=2)
self.enc2_res4_2 = ResBL(512, 512, 512, stride=1)
self.enc2_conv5 = nn.Conv2d( 512, 1024, 3, padding=1, stride=2)
self.enc2_bn5 = nn.BatchNorm2d(1024)
self.enc2_conv6 = nn.Conv2d(1024, 1024, 3, padding=1, stride=1)
self.enc2_bn6 = nn.BatchNorm2d(1024)
# decoder
self.dec_conv6 = nn.Conv2d(2048, 1024, 3, padding=1, stride=1)
self.dec_bn6 = nn.BatchNorm2d(1024)
self.dec_conv5 = nn.Conv2d(1024, 512, 3, padding=1, stride=1)
self.dec_bn5 = nn.BatchNorm2d(512)
self.dec_res4_2 = ResBL( 512, 512, 512, upscale=1, skip2=1024)
self.dec_res4_1 = ResBL( 512, 512, 256, upscale=2)
self.dec_res3_2 = ResBL( 256, 256, 256, upscale=1, skip2=512)
self.dec_res3_1 = ResBL( 256, 256, 128, upscale=2)
if self.corr is True:
self.dec_corr2 = Correlation(pad_size=20, kernel_size=1, max_displacement=20, stride1=1, stride2=2, corr_multiply=1)
self.dec_res2_2 = ResBL( 128, 128, 128, upscale=1, skip1=256+21*21)
else:
self.dec_res2_2 = ResBL(128, 128, 128, upscale=1, skip1=256)
self.dec_res2_1 = ResBL( 128, 128, 64, upscale=2)
self.dec_res1_2 = ResBL( 64, 64, 64, upscale=1, skip2=128)
self.dec_res1_1 = ResBL( 64, 64, 64, upscale=1)
if self.corr is True:
self.dec_corr1 = Correlation(pad_size=20, kernel_size=1, max_displacement=20, stride1=1, stride2=2, corr_multiply=1)
self.dec_conv1 = nn.Conv2d(192+21*21, 64, 7, padding=3, stride=1, bias=False)
else:
self.dec_conv1 = nn.Conv2d(192, 64, 7, padding=3, stride=1, bias=False)
self.dec_bn1 = nn.BatchNorm2d(64)
# classifier
self.classifier = nn.Conv2d(64, outc, 1, padding=0, stride=1)
# util
self.unpool = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.relu = nn.ReLU(inplace=True)
if self.corr is True:
self.corr_activation = nn.LeakyReLU(0.1,inplace=True)
# initialization
self.init_weights()
if pretrained is True:
self.load_net_param()
def forward(self, x):
x1, x2 = torch.split(x,3,1)
# encoder1
enc1_f1 = self.enc1_conv1(x1)
enc1_f1 = self.enc1_bn1(enc1_f1)
enc1_f1 = self.relu(enc1_f1)
enc1_f2 = self.enc1_pool1(enc1_f1)
enc1_f2 = self.enc1_res1_1(enc1_f2)
enc1_f2 = self.enc1_res1_2(enc1_f2)
enc1_f3 = self.enc1_res2_1(enc1_f2)
enc1_f3 = self.enc1_res2_2(enc1_f3)
enc1_f4 = self.enc1_res3_1(enc1_f3)
enc1_f4 = self.enc1_res3_2(enc1_f4)
enc1_f5 = self.enc1_res4_1(enc1_f4)
enc1_f5 = self.enc1_res4_2(enc1_f5)
enc1_f6 = self.enc1_conv5(enc1_f5)
enc1_f6 = self.enc1_bn5(enc1_f6)
enc1_f6 = self.relu(enc1_f6)
enc1_f6 = self.enc1_conv6(enc1_f6)
enc1_f6 = self.enc1_bn6(enc1_f6)
enc1_f6 = self.relu(enc1_f6)
# encoder2
enc2_f1 = self.enc2_conv1(x2)
enc2_f1 = self.enc2_bn1(enc2_f1)
enc2_f1 = self.relu(enc2_f1)
enc2_f2 = self.enc2_pool1(enc2_f1)
enc2_f2 = self.enc2_res1_1(enc2_f2)
enc2_f2 = self.enc2_res1_2(enc2_f2)
enc2_f3 = self.enc2_res2_1(enc2_f2)
enc2_f3 = self.enc2_res2_2(enc2_f3)
enc2_f4 = self.enc2_res3_1(enc2_f3)
enc2_f4 = self.enc2_res3_2(enc2_f4)
enc2_f5 = self.enc2_res4_1(enc2_f4)
enc2_f5 = self.enc2_res4_2(enc2_f5)
enc2_f6 = self.enc2_conv5(enc2_f5)
enc2_f6 = self.enc2_bn5(enc2_f6)
enc2_f6 = self.relu(enc2_f6)
enc2_f6 = self.enc2_conv6(enc2_f6)
enc2_f6 = self.enc2_bn6(enc2_f6)
enc2_f6 = self.relu(enc2_f6)
# decoder
enc_f6 = torch.cat([enc1_f6, enc2_f6], 1)
dec = self.dec_conv6(enc_f6)
dec = self.dec_bn6(dec)
dec = self.relu(dec)
dec = self.dec_conv5(dec)
dec = self.unpool(dec)
dec = self.dec_bn5(dec)
dec = self.relu(dec)
skp = torch.cat([enc1_f5, enc2_f5], 1)
dec = self.dec_res4_2(dec, skip2=skp)
dec = self.dec_res4_1(dec)
skp = torch.cat([enc1_f4, enc2_f4], 1)
dec = self.dec_res3_2(dec, skip2=skp)
dec = self.dec_res3_1(dec)
if self.corr is True:
cor = self.dec_corr2(enc1_f3, enc2_f3)
cor = self.corr_activation(cor)
skp = torch.cat([enc1_f3, enc2_f3, cor], 1)
else:
skp = torch.cat([enc1_f3, enc2_f3], 1)
dec = self.dec_res2_2(dec, skip1=skp)
dec = self.dec_res2_1(dec)
skp = torch.cat([enc1_f2, enc2_f2], 1)
dec = self.dec_res1_2(dec, skip2=skp)
dec = self.dec_res1_1(dec)
dec = self.unpool(dec)
if self.corr is True:
cor = self.dec_corr1(enc1_f1, enc2_f1)
cor = self.corr_activation(cor)
dec = torch.cat([dec, enc1_f1, enc2_f1, cor], 1)
else:
dec = torch.cat([dec, enc1_f1, enc2_f1], 1)
dec = self.dec_conv1(dec)
dec = self.unpool(dec)
dec = self.dec_bn1(dec)
dec = self.relu(dec)
out = self.classifier(dec)
return out
def init_weights(self):
init.xavier_uniform_relu(self.modules())
def load_net_param(self):
from torchvision.models import resnet18
resnet = resnet18(pretrained=True)
self.enc1_conv1.load_state_dict(resnet.conv1.state_dict())
self.enc1_bn1.load_state_dict(resnet.bn1.state_dict())
self.enc1_res1_1.load_state_dict(list(resnet.layer1.children())[0].state_dict())
self.enc1_res1_2.load_state_dict(list(resnet.layer1.children())[1].state_dict())
self.enc1_res2_1.load_state_dict(list(resnet.layer2.children())[0].state_dict())
self.enc1_res2_2.load_state_dict(list(resnet.layer2.children())[1].state_dict())
self.enc1_res3_1.load_state_dict(list(resnet.layer3.children())[0].state_dict())
self.enc1_res3_2.load_state_dict(list(resnet.layer3.children())[1].state_dict())
self.enc1_res4_1.load_state_dict(list(resnet.layer4.children())[0].state_dict())
self.enc1_res4_2.load_state_dict(list(resnet.layer4.children())[1].state_dict())
self.enc2_conv1.load_state_dict(resnet.conv1.state_dict())
self.enc2_bn1.load_state_dict(resnet.bn1.state_dict())
self.enc2_res1_1.load_state_dict(list(resnet.layer1.children())[0].state_dict())
self.enc2_res1_2.load_state_dict(list(resnet.layer1.children())[1].state_dict())
self.enc2_res2_1.load_state_dict(list(resnet.layer2.children())[0].state_dict())
self.enc2_res2_2.load_state_dict(list(resnet.layer2.children())[1].state_dict())
self.enc2_res3_1.load_state_dict(list(resnet.layer3.children())[0].state_dict())
self.enc2_res3_2.load_state_dict(list(resnet.layer3.children())[1].state_dict())
self.enc2_res4_1.load_state_dict(list(resnet.layer4.children())[0].state_dict())
self.enc2_res4_2.load_state_dict(list(resnet.layer4.children())[1].state_dict())
class ResBL(nn.Module):
def __init__(self, inc, midc, outc, stride=1, upscale=1, skip1=0, skip2=0):
super(ResBL, self).__init__()
self.conv1 = nn.Conv2d(inc+skip1, midc, 3, padding=1, stride=stride, bias=False)
self.bn1 = nn.BatchNorm2d(midc)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(midc+skip2, outc, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(outc)
self.upscale = None
if upscale > 1:
self.upscale = nn.Upsample(scale_factor=upscale, mode='bilinear', align_corners=True)
self.downsample = None
if inc != outc or stride > 1 or upscale > 1:
if upscale > 1:
self.downsample = nn.Sequential(
nn.Conv2d(inc, outc, 1, padding=0, stride=stride, bias=False),
nn.Upsample(scale_factor=upscale, mode='bilinear', align_corners=True),
nn.BatchNorm2d(outc),
)
else:
self.downsample = nn.Sequential(
nn.Conv2d(inc, outc, 1, padding=0, stride=stride, bias=False),
nn.BatchNorm2d(outc),
)
def forward(self, x, skip1=None, skip2=None):
if skip1 is not None:
res = torch.cat([x, skip1], 1)
else:
res = x
res = self.conv1(res)
res = self.bn1(res)
res = self.relu(res)
if skip2 is not None:
res = torch.cat([res, skip2], 1)
res = self.conv2(res)
if self.upscale is not None:
res = self.upscale(res)
res = self.bn2(res)
identity = x
if self.downsample is not None:
identity = self.downsample(x)
res += identity
out = self.relu(res)
return out