forked from kensakurada/sscdnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
205 lines (156 loc) · 7.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from __future__ import print_function
from argparse import ArgumentParser
import cv2
import csv
import os.path
import numpy as np
import torch
from torch.optim import Adam, lr_scheduler
from torch.autograd import Variable
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from criterion import CrossEntropyLoss2d
from dataset_pcd import PCD
import sys
sys.path.append("./correlation_package/build/lib.linux-x86_64-3.6")
import cscdnet
def colormap():
cmap=np.zeros([2, 3]).astype(np.uint8)
cmap[0,:] = np.array([0, 0, 0])
cmap[1,:] = np.array([255, 255, 255])
return cmap
class Colorization:
def __init__(self, n=2):
self.cmap = colormap()
self.cmap = torch.from_numpy(np.array(self.cmap[:n]))
def __call__(self, gray_image):
size = gray_image.size()
color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0)
for label in range(0, len(self.cmap)):
mask = gray_image[0] == label
color_image[0][mask] = self.cmap[label][0]
color_image[1][mask] = self.cmap[label][1]
color_image[2][mask] = self.cmap[label][2]
return color_image
class Training:
def __init__(self, arguments):
self.args = arguments
self.icount = 0
if self.args.use_corr:
self.dn_save = os.path.join(self.args.checkpointdir,'cscdnet','checkpointdir','set{}'.format(self.args.cvset))
else:
self.dn_save = os.path.join(self.args.checkpointdir,'cdnet','checkpointdir','set{}'.format(self.args.cvset))
def train(self):
self.color_transform = Colorization(2)
# Dataset loader for train and test
dataset_train = DataLoader(
PCD(os.path.join(self.args.datadir, 'set{}'.format(self.args.cvset), 'train')),
num_workers=self.args.num_workers, batch_size=self.args.batch_size, shuffle=True)
self.dataset_test = PCD(os.path.join(self.args.datadir, 'set{}'.format(self.args.cvset), 'test'))
self.test_path = os.path.join(self.dn_save, 'test')
if not os.path.exists(self.test_path):
os.makedirs(self.test_path)
# Set loss function, optimizer and learning rate
weight = torch.ones(2)
criterion = CrossEntropyLoss2d(weight.cuda())
optimizer = Adam(self.model.parameters(), lr=0.0001, betas=(0.5, 0.999))
lambda1 = lambda icount: (float)(self.args.max_iteration - icount) / (float)(self.args.max_iteration)
model_lr_scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)
fn_loss = os.path.join(self.dn_save,'loss.csv')
f_loss = open(fn_loss, 'w')
writer = csv.writer(f_loss)
self.writers= SummaryWriter(os.path.join(self.dn_save, 'log'))
# Training loop
icount_loss = []
while self.icount < self.args.max_iteration:
for step, (inputs_train, mask_train) in enumerate(dataset_train):
inputs_train = inputs_train.cuda()
mask_train = mask_train.cuda()
inputs_train = Variable(inputs_train)
mask_train = Variable(mask_train)
outputs_train = self.model(inputs_train)
optimizer.zero_grad()
self.loss = criterion(outputs_train, mask_train[:, 0])
self.loss.backward()
optimizer.step()
self.icount += 1
icount_loss.append(self.loss.item())
writer.writerow([self.icount, self.loss.item()])
if self.args.icount_plot > 0 and self.icount % self.args.icount_plot == 0:
self.test()
average = sum(icount_loss) / len(icount_loss)
print('loss: {0} (icount: {1})'.format(average, self.icount))
icount_loss.clear()
if self.args.icount_save > 0 and self.icount % self.args.icount_save == 0:
self.checkpoint()
# Call lr_schduler.step() after optimizer.step()
model_lr_scheduler.step()
f_loss.close()
def test(self):
index_test = self.dataset_test.get_random_index()
inputs_test, mask_gt_test = self.dataset_test[index_test]
inputs_test = inputs_test[np.newaxis, :, :]
inputs_test = inputs_test.cuda()
inputs_test = Variable(inputs_test)
outputs_test = self.model(inputs_test)
inputs = inputs_test[0].cpu().data
t0_test = inputs[0:3, :, :]
t1_test = inputs[3:6, :, :]
t0_test = (t0_test + 1.0) * 128
t1_test = (t1_test + 1.0) * 128
mask_gt = mask_gt_test.numpy().astype(np.uint8) * 255
outputs = outputs_test[0][np.newaxis, :, :, :]
outputs = outputs[:, 0:2, :, :]
mask_pred = np.transpose(self.color_transform(outputs[0].cpu().max(0)[1][np.newaxis, :, :].data).numpy(), (1, 2, 0)).astype(np.uint8)
img_out = self.display_results(t0_test, t1_test, mask_pred, mask_gt)
self.log_tbx(torch.from_numpy(np.transpose(np.flip(img_out,axis=2).copy(), (2, 0, 1))))
def display_results(self, t0, t1, mask_pred, mask_gt):
rows = cols = 256
img_out = np.zeros((rows * 2, cols * 2, 3), dtype=np.uint8)
img_out[0:rows, 0:cols, :] = np.transpose(t0.numpy(), (1, 2, 0)).astype(np.uint8)
img_out[0:rows, cols:cols * 2, :] = np.transpose(t1.numpy(), (1, 2, 0)).astype(np.uint8)
img_out[rows:rows * 2, 0:cols, :] = cv2.cvtColor(np.transpose(mask_gt, (1, 2, 0)), cv2.COLOR_GRAY2RGB)
img_out[rows:rows * 2, cols:cols * 2, :] = mask_pred
return img_out
# Output results for tensorboard
def log_tbx(self, image):
writer = self.writers
writer.add_scalar('data/loss', self.loss.item(), self.icount)
writer.add_image('change detection', image, self.icount)
def checkpoint(self):
if self.args.use_corr:
filename = 'cscdnet-{0:08d}.pth'.format(self.icount)
else:
filename = 'cdnet-{0:08d}.pth'.format(self.icount)
# Enable generic loading of module if using multiple GPU's
if torch.cuda.device_count() > 1:
torch.save(self.model.module.state_dict(), os.path.join(self.dn_save, filename))
else:
torch.save(self.model.state_dict(), os.path.join(self.dn_save, filename))
print('save: {0} (iteration: {1})'.format(filename, self.icount))
def run(self):
if self.args.use_corr:
print('Correlated Siamese Change Detection Network (CSCDNet)')
self.model = cscdnet.Model(inc=6, outc=2, corr=True, pretrained=True)
else:
print('Siamese Change Detection Network (Siamese CDResNet)')
self.model = cscdnet.Model(inc=6, outc=2, corr=False, pretrained=True)
# Run on muliple GPU's if available
if torch.cuda.device_count() > 1:
print("Training with", torch.cuda.device_count(), "GPU's")
model = torch.nn.DataParallel(model)
self.model = self.model.cuda()
self.train()
if __name__ == '__main__':
parser = ArgumentParser(description='Start training ...')
parser.add_argument('--checkpointdir', required=True)
parser.add_argument('--datadir', required=True)
parser.add_argument('--use-corr', action='store_true', help='using correlation layer')
parser.add_argument('--max-iteration', type=int, default=50000)
parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--batch-size', type=int, default=32)
parser.add_argument('--cvset', type=int, default=0)
parser.add_argument('--icount-plot', type=int, default=0)
parser.add_argument('--icount-save', type=int, default=10)
training = Training(parser.parse_args())
training.run()