-
Notifications
You must be signed in to change notification settings - Fork 0
/
split_periods.py
296 lines (287 loc) · 10.6 KB
/
split_periods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from sys import argv
import queue, threading
import multiprocessing as mp
import concurrent.futures
import csv
import copy
from copy import deepcopy
import sched, time, datetime
import pickle
import gzip
import ubjson
import math
from pathlib import Path
from glob import glob
import numpy as np
import random
import scipy.stats as stats
from random import randint, uniform
from sklearn.metrics import r2_score
#from sklearn.model_selection import cross_val_score
#from sklearn.neural_network import MLPRegressor
from sklearn.ensemble import AdaBoostRegressor,RandomForestRegressor,BaggingRegressor,GradientBoostingRegressor,ExtraTreesRegressor
from sklearn.svm import LinearSVR, SVR, NuSVR
from sklearn.neural_network import MLPRegressor
from sklearn.linear_model import SGDRegressor
from sklearn.neighbors import KNeighborsRegressor
#from sklearn.neighbors import RadiusNeighborsRegressor
from sklearn.model_selection import train_test_split
from sklearn.model_selection import RandomizedSearchCV
from sklearn.preprocessing import MinMaxScaler
import xgboost as xgboost
#import lightgbm as lgb
import indicators as ind
from symbols import *
from math import sqrt
import matplotlib.pyplot as plt
import pydnn
mtt = 3 # months to test
tf = 15
iterations = 10
boundary = 0.38
#starting = int(60/tf*24*23*39)
#validation = int(60/tf*24*23*mtt)
validation = int(60/tf*24*23*mtt*2)
testing = int(60/tf*24*23*mtt)
start = 20130101
#test = "_test"
test = ""
#d = "combi_"+str(tf)+"/svr"
d = "combi_"+str(tf)+"/gradient_boosting"
#d = "combi_"+str(tf)+"/neural____network"
#d = "combi_"+str(tf)+"/xg_boosting"
def prepare(p,tf,isTrender=False):
if p=="USATECHIDXUSD": divisor = 1000
else: divisor = 1
ema=0
r = open('data/'+p+str(tf)+'.degap.csv','r')
r.readline()
d=0
while d<start:
d,t,o,h,l,c,a,v = ind.parseLine(r,divisor)
w=[]
x=[]
y=[]
for i in range(int(24*60/tf)): x.append([])
for i in range(int(24*60/tf)): y.append([])
yo=[]
cnt=0
for i in range(50):
d,t,o,h,l,c,a,v = ind.parseLine(r,divisor)
oo = o
w.append(o)
while True:
xx=[]
xx.append(c-l)
xx.append(h-c)
d,t,o,h,l,c,a,v = ind.parseLine(r,divisor)
if d==-1: break
for i in [1,2,3,4,5,6,7,8,10,12,14,16,20,25,30,40,50]:
xx.append(o-w[50-i])
w = w[1:]
w.append(o)
prd = int(float(t.split(":")[0])*4)+int(int(t.split(":")[1])/tf)
x[prd].append(xx)
la = ind.indicator(p,"lookahead",tf,0,d,t,0)
th = 0 #commission[p]/unit[p]+spread[p]
if la > o*0.001: la = 3
elif la > o*0.0005: la = 2
elif la > 0: la=1
elif la < -o*0.001: la = -3
elif la < -o*0.0005: la = -2
elif la < 0: la=-1
else: la=0
y[prd].append(la)
cnt+=1
r.close()
ind.data={}
print(p+": "+str(len(x))+" "+str(len(x[0]))+" "+str(len(x[0][0])))
with gzip.open("data/"+p+str(tf)+".s0", 'wb') as f: pickle.dump([x,y], f)
print(p+" closed with "+str(cnt)+ " records...")
print(len(x[0][0]))
print(len(x[0]))
print(p+" done!")
cache = {}
def pload2(file):
print("loading..."+file)
r = gzip.open(file,'rb')
d = pickle.load(r)
r.close()
print(file+" loaded ")
return d[0],d[1]
def gb_train(p):
lr = 0.1
best_score=-9999999
best_regressor=None
LV = uniform(0.002,0.01)
SP = uniform(0.01,0.05)
SS = 1
r=GradientBoostingRegressor(verbose=0, warm_start=True, loss='huber', learning_rate=lr, n_estimators=1,max_depth=3,min_samples_leaf=LV,min_samples_split=SP,subsample=SS, alpha=0.9)
#print("training "+p+"------------------->"+d+"/"+outfile)
bj=0
bm=0
bcnt=0
bth=0
for j in range(1,3000):
r.set_params(n_estimators=j)
try:
r.fit(xx[p],yy[p])
except:
print(p+" error")
score,trades, mx, mn = simulate(r.predict(xt[p]),yt[p],p)
if score>best_score:
best_score=score
best_score_trades = trades
best_regressor=copy.deepcopy(r)
bj=j
if j-bj>9: break
if not os.path.exists(d): os.makedirs(d)
best_score,best_score_trades, mx, mn = simulate(best_regressor.predict(xtt[p]),ytt[p],p)
return best_score, best_score_trades, best_regressor, mx, mn
def simulate(pred,actual,pair):
cnt = len(actual)
th = (max(pred)-min(pred))/2*0.1
trades = 0
correct = 0
mx = max(pred)
mn = min(pred)
for i in range(4,len(actual)):
trades=trades+1
if pred[i]*actual[i]>0: correct = correct + 1
return correct/trades, trades, mx, mn
if __name__ == '__main__':
#pairs99 = ["EURUSD","GBPUSD","USDCHF","USDCAD","AUDUSD","NZDUSD"]
pl=[]
xf = {}
yf = {}
ts = {}
x = {}
y = {}
xx = {}
xt = {}
yy = {}
yt = {}
at = {}
xtt= {}
ytt={}
iter = 20
if argv[1]=="test_i":
ind.test("CADCHF",60,10,20190903,"07:00:00")
elif argv[1]=="degap":
pool = mp.Pool(28)
for p in pairs99: pl.append(pool.apply_async(degap, (p,tf)))
#for p in pairs99 + chosen: pl.append(pool.apply_async(degap, (p,tf)))
for pl2 in pl: pl2.get()
elif argv[1]=="prepare":
pool = mp.Pool(28)
#pairs99 = ["EURCAD","EURCHF","EURAUD","EURNZD","GBPCAD","GBPCHF","GBPAUD","GBPNZD","CADCHF","AUDCAD","NZDCAD","AUDCHF","NZDCHF","AUDNZD"]
#for p in pairs99: prepare(p,tf)
for p in pairs99 :
#for p in ["EURNZD"]:
#for p in ["XAUUSD"]:
if "JPY" in p: continue
print(p)
pl.append(pool.apply_async(prepare,(p,tf)))
for pl2 in pl: pl2.get()
elif argv[1]=="combi":
save_combi()
elif argv[1]=="train":
tscore = 0
def evaluate_accuracy(p):
x[p],y[p] = pload2("Data/"+p+str(tf)+".s0")
#if "JPY" in p: continue
mm=[]
ww=[]
score=[]
for i in range(int(24*60/tf)): score.append(0)
sw=0
imp = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
for ii in range(iter):
for q in range(13):
#for q in range(12,13):
for period in range(int(24*60/tf)):
mon = 23
last = mon*((14-q)*3)+1
xx[p] = x[p][period][q*3*mon:-last]
xt[p] = x[p][period][-last:-last+mon*3]
xtt[p]= x[p][period][-last+mon*3:-last+mon*6]
yy[p] = y[p][period][q*3*mon:-last]
yt[p] = y[p][period][-last:-last+mon*3]
ytt[p]= y[p][period][-last+mon*3:-last+mon*6]
s, t, r, m, n = gb_train(p)
score[period] = score[period] + s
for period in range(int(24*60/tf)):
ave = score[period]/(ii*13+q+1)
if ave>0.55 and period>4 and period<95:print(">>>........................................................................................................"+p+"..."+str(ii)+"..."+str(q)+"..."+str(period)+" : "+str(ave))
with gzip.open("data/"+p+str(tf)+".score", 'wb') as f: pickle.dump(score, f)
pr = []
for p in pairs99:
if "JPY" in p : continue
pr.append(mp.Process(target=evaluate_accuracy, args=(p,)))
pr[-1].start()
for j in range(len(pr)): pr[j].join()
elif argv[1]=="generate":
files = glob("data/selected/*.regressor")
for f in files: os.remove(f)
def obtain_best(p):
with gzip.open("data/"+p+str(tf)+".score", 'rb') as f: score=pickle.load(f)
x[p],y[p] = pload2("Data/"+p+str(tf)+".s0")
for period in range(int(24*60/tf)):
if score[period]/iter/13<0.55 or period<4 or period>94: continue
mon = 23
xx[p] = x[p][period][3*mon:-3*mon]
xt[p] = x[p][period][-3*mon:]
xtt[p]= x[p][period][-3*mon:]
yy[p] = y[p][period][3*mon:-3*mon]
yt[p] = y[p][period][-3*mon:]
ytt[p]= y[p][period][-3*mon:]
bs = 0
bt = 0
bm = 0
for i in range(10):
s, t, r, m, n = gb_train(p)
if s>bs:
bs = s
bt = t
bm = m
bn = n
br = r
if bs<0.55: continue
print(p+":"+str(period)+"---" +str(bs)+"\t"+str(bt))
with gzip.open("data/selected/"+p+str(tf)+"_"+str(period)+"_"+str(bm)+"_"+str(bn)+".regressor", 'wb') as f:
pickle.dump(br, f)
print("data/selected/"+p+str(tf)+"_"+str(period)+"_"+str(bm)+"_"+str(bn)+".regressor...saved!")
pr = []
for p in pairs99:
if "JPY" in p : continue
#if p == "AUDCAD": continue
pr.append(mp.Process(target=obtain_best, args=(p,)))
pr[-1].start()
elif argv[1]=="export":
def wr(w,d): w.write(str(d)+"\r\n")
def wrtree(w,t):
wr(w,len(t.feature))
#print(len(t.feature))
for i in range(len(t.feature)):
wr(w,t.children_left[i])
wr(w,t.children_right[i])
wr(w,t.feature[i])
wr(w,t.threshold[i])
wr(w,t.value[i][0][0])
files = glob("data/selected/*.regressor")
w = open('/mnt/c/Users/Lip Phang/AppData/Roaming/MetaQuotes/Terminal/Common/Files/all.regressors', 'w',newline='')
wr(w,len(files))
for f in files:
print(f)
with gzip.open(f, 'rb') as fr: model = pickle.load(fr)
wr(w,f.split("/")[2][:6])
wr(w,f.split("_")[1])
wr(w,f.split("_")[2].split(".")[0]+"."+f.split("_")[2].split(".")[1])
wr(w,f.split("_")[3].split(".")[0]+"."+f.split("_")[3].split(".")[1])
print(f.split("_")[3].split(".")[0]+"."+f.split("_")[3].split(".")[1])
wr(w,model.learning_rate)
wr(w,model.init_.predict([0])[0])
wr(w,len(model.estimators_))
for tree in model.estimators_: wrtree(w,tree[0].tree_)
wr(w,"END")
w.close()