-
Notifications
You must be signed in to change notification settings - Fork 6
/
main_IW.py
229 lines (192 loc) · 9.92 KB
/
main_IW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import sys
import gym
import eplus_env
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
import argparse
import numpy as np
import pandas as pd
import copy
import pickle
import pdb
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.optim as optim
from torch.distributions import MultivariateNormal, Normal
from torch.utils.tensorboard import SummaryWriter
from algo.ppo import PPO
from agents.nn_policy import NeuralController
from utils.network import LSTM
from utils.ppo_utils import make_dict, R_func, Advantage_func, Replay_Memory
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DEVICE
parser = argparse.ArgumentParser(description='Gnu-RL: Online Learning')
parser.add_argument('--gamma', type=float, default=0.9, metavar='G',
help='discount factor (default: 0.9)')
parser.add_argument('--seed', type=int, default=42, metavar='N',
help='random seed (default: 42)')
parser.add_argument('--lr', type=float, default=5e-4, metavar='G',
help='Learning Rate')
parser.add_argument('--lam', type=int, default=10, metavar='N',
help='random seed (default: 42)')
parser.add_argument('--epsilon', type=float, default=0.2, metavar='G', help='PPO Clip Parameter')
parser.add_argument('--update_episode', type=int, default=4, metavar='N',
help='PPO update episode (default: 1); If -1, do not update weights')
parser.add_argument('--T', type=int, default=12, metavar='N',
help='Planning Horizon (default: 12)')
parser.add_argument('--step', type=int, default=300*3, metavar='N',
help='Time Step in Simulation, Unit in Seconds (default: 900)') # 15 Minutes Now!
parser.add_argument('--exp_name', type=str, default='nn_w_proj',
help='save name')
parser.add_argument('--eta', type=int, default=3,
help='Hyper Parameter for Balancing Comfort and Energy')
parser.add_argument('--model_no', type = int, default = 1800, help = '')
args = parser.parse_args()
def main():
torch.manual_seed(args.seed)
writer = SummaryWriter(comment = args.exp_name)
# Create Simulation Environment
env = gym.make('Eplus-IW-test-v0')
# Specify variable names for control problem
obs_name = ["Outdoor Temp.", "Outdoor RH", "Wind Speed", "Wind Direction", "Diff. Solar Rad.", "Direct Solar Rad.", "HW Enable OA Setpoint", "IW Average PPD", "HW Supply Setpoint", "Indoor Air Temp.", "Indoor Temp. Setpoint", "Occupancy Flag", "Heating Demand"]
state_name = ["Indoor Air Temp."]
dist_name = ["Outdoor Temp.", "Outdoor RH", "Wind Speed", "Wind Direction", "Diff. Solar Rad.", "Direct Solar Rad.", "Occupancy Flag"]
ctrl_name = ["HW Enable OA Setpoint", "HW Supply Setpoint"]
target_name = ["Indoor Temp. Setpoint"]
dist_name = dist_name + target_name
n_state = len(state_name)
n_ctrl = 1 #len(ctrl_name)
n_dist = len(dist_name)
eta = [0.1, args.eta] # eta: Weight for comfort during unoccupied and occupied mode
step = args.step # step: Timestep; Unit in seconds
T = args.T # T: Number of timesteps in the planning horizon
tol_eps = 91 # tol_eps: Total number of episodes; Each episode is a natural day
# Read Information on Weather, Occupancy, and Target Setpoint
obs_2017 = pd.read_pickle("data/data_2017_baseline.pkl")
disturbance = obs_2017[dist_name]
# Min-Max Normalization
obs_TMY3 = pd.read_pickle("data/data_TMY3_baseline.pkl") # For Min-Max Normalization Only
dist_min = obs_TMY3[dist_name].min()
dist_max = obs_TMY3[dist_name].max()
disturbance = (disturbance - dist_min)/(dist_max - dist_min)
state_min = obs_TMY3[state_name].min().values
state_max = obs_TMY3[state_name].max().values
memory = Replay_Memory()
## Load pretrained LSTM policy weights
'''
Expects all states, actions, and disturbances are MinMaxNormalized; (Based on TMY3 data)
The LSTM also expects "setpoint" as part of the disturbance term.
'''
network = LSTM(n_state, n_ctrl, n_dist)
network.load_state_dict(torch.load("data/param_IW-nn-{}".format(args.model_no)))
## Load thermodynamics model to construct the polytope
'''
New model also expects states, actions, and disturbances to be MinMaxNormalized
'''
model_dict ={'a': np.array([0.934899]),
'bu': np.array([0.024423]),
'bd': np.array([5.15795080e-02, -6.92141185e-04, -1.21103548e-02,
2.38717578e-03, -3.52816030e-03, 3.32528746e-03, 7.19267820e-03]),
'Pm': 1 # Upper bound of u;
}
policy = NeuralController(T, step, network, RC_flag = False, **model_dict)
agent = PPO(policy, memory, lr = args.lr, clip_param = args.epsilon, lam = args.lam)
dir = 'results'
if not os.path.exists(dir):
os.mkdir(dir)
multiplier = 1 # Normalize the reward for better training performance
n_step = 96 #timesteps per day
sigma = 0.1
sigma_min = 0.01
sigma_step = (sigma-sigma_min) * args.update_episode/tol_eps
timeStep, obs, isTerminal = env.reset()
start_time = pd.datetime(year = env.start_year, month = env.start_mon, day = env.start_day)
cur_time = start_time
obs_dict = make_dict(obs_name, obs)
# Save for record
timeStamp = [start_time]
observations = [obs]
actions_taken = []
for i_episode in range(tol_eps):
## Save for Parameter Updates
rewards = []
real_rewards = []
for t in range(n_step):
state = np.array([obs_dict[name] for name in state_name])
state = (state-state_min)/(state_max-state_min)
x_upper = obs_2017['x_upper'][cur_time : cur_time + pd.Timedelta(seconds = (T-1) * step)].values
x_lower = obs_2017['x_lower'][cur_time : cur_time + pd.Timedelta(seconds = (T-1) * step)].values
## Margin
#x_lower+=0.025
#x_upper-=0.025
x_upper = (x_upper-state_min)/(state_max-state_min)
x_lower = (x_lower-state_min)/(state_max-state_min)
dt = disturbance[cur_time : cur_time + pd.Timedelta(seconds = (T-1) * step)].values # T x n_dist
## Update the model in the controller
# CVXPY expects np.array for parameters
agent.policy_old.updateState(state, x_lower = x_lower, x_upper = x_upper, d = dt[:, :-1])
agent.memory.x_lowers.append(torch.tensor(x_lower).float())
agent.memory.x_uppers.append(torch.tensor(x_upper).float())
state = torch.tensor(state).unsqueeze(0).float() # 1 x n_state
dt = torch.tensor(dt).float()
agent.memory.states.append(state)
agent.memory.disturbance.append(dt)
## Use policy_old to select action
mu, sigma_sq, _ = agent.forward(state, dt.unsqueeze(1), current = False) # mu, sigma_sq: T x 1 x Dim.
sigma_sq = torch.ones_like(mu) * sigma**2
## Myopic Limit: A hack to make sure the projected actions do not result in tiny violations
margin = 0.1/(state_max-state_min)
u_limits = np.array([x_lower[0]+margin.item(), x_upper[0]-margin.item()]) - model_dict['a'] * state.item() - model_dict['bd'].dot(dt[0, :-1].numpy())
u_limits /= model_dict['bu']
u_limits = np.clip(u_limits, 0, 1)
#pdb.set_trace()
action, old_logprob = agent.select_action(mu[0], sigma_sq[0], u_limits = u_limits)
agent.memory.actions.append(action.detach().clone())
agent.memory.old_logprobs.append(old_logprob.detach().clone())
SWT = 20 + 45 * action.item()
if (SWT<30):
HWOEN = -30 # De Facto Off
action = torch.zeros_like(action)
SWT = 20
else:
HWOEN = 30 # De Facto On
if np.isnan(SWT):
SWT = 20
action4env = (HWOEN, SWT)
# Before step
print(f'{cur_time}: IAT={obs_dict["Indoor Air Temp."]}, Occupied={obs_dict["Occupancy Flag"]}, Control={SWT}')
for _ in range(3):
timeStep, obs, isTerminal = env.step(action4env)
obs_dict = make_dict(obs_name, obs)
reward = R_func(obs_dict, SWT-20, eta)
# Per step
real_rewards.append(reward)
bl = 0#obs_2017['rewards'][cur_time]
rewards.append((reward-bl) / 15) # multiplier
# print(f'Reward={reward}, BL={bl}')
# Save for record
cur_time = start_time + pd.Timedelta(seconds = timeStep)
timeStamp.append(cur_time)
observations.append(obs)
actions_taken.append(action4env)
writer.add_scalar('Reward', np.mean(real_rewards), i_episode)
writer.add_scalar('Reward_Diff', np.mean(rewards), i_episode)
print("{}, reward: {}".format(cur_time, np.mean(real_rewards)))
advantages = Advantage_func(rewards, args.gamma)
agent.memory.advantages.append(advantages)
# if -1, do not update parameters
if args.update_episode == -1:
agent.memory.clear_memory()
elif (i_episode >0) & (i_episode % args.update_episode ==0):
agent.update_parameters(sigma = sigma, K = 8)
sigma = max(sigma_min, sigma-sigma_step)
obs_df = pd.DataFrame(np.array(observations), index = np.array(timeStamp), columns = obs_name)
obs_df = obs_df.drop(columns=ctrl_name)
action_df = pd.DataFrame(np.array(actions_taken), index = np.array(timeStamp[:-1]), columns = ctrl_name)
obs_df = obs_df.merge(action_df, how = 'left', right_index = True, left_index = True)
obs_df.to_pickle("results/obs_"+args.exp_name+".pkl")
if __name__ == '__main__':
main()